Капель 105 м руководство по эксплуатации. Практическое руководство по использованию систем капиллярного электрофореза «капель. Вспомогательные устройства и материалы

Спб.: Политехника, 2004. - 679 c.
ISBN 5-7325-0236-Х
Скачать (прямая ссылка): spravochniktehnologaoptika2004.djvu Предыдущая 1 .. 113 > .. >> Следующая
Окончательное полирование монокорунда и граната с требованиями по форме N (0,1-4,0) и ЛN (0,1-0,4) и чистоте Р IV продолжают на полировальниках из дюралюминия или меди алмазом АСМ1/0; АСМО,5/0,1; АСМО,3/0 последовательно на станках типа ПД. При доводке поверхностей менее 1N снижают давление до 50 кПа и менее (особенно на блоках диаметром более 0,1 м).
Окончательное полирование граната, фианита и кварца с указанными точностями осуществляют на полировальниках из смол СП с наполнителями (оксидом хрома, полиритом и т. п.).
Окончательное полирование монокорунда без требований по отступлению от формы, но с повышенными требованиями по шероховатости (Rz < 0,01) и чистоте (Р III, без сетки царапин) продолжают алмазом АСМ1/0, АСМО,5/0,1 либо оксидом хрома на полировальнике из полировочных смол СП4-СП6 с наполнителями или без них (см. табл. 5.12). Полирование ОД с целью получения максимального пропускания в ВУФ- и УФ-областях спектра продолжают алмазом до АСМО,5/0,1 на полировальниках из дюралюминия и затем на искусственной замше, натянутой на тот же полировальник, субмикронными порошками а-А1203 зернистостью
0,5/0 с водой или этиловым спиртом [а. с. СССР 1663063, 1593307].
Полирование монокорунда для последующего просветляющего покрытия пленками Si02 продолжают на искусственной замше водной суспензией коллоидного кремнезема с а-А1203 зернистостью
294
0,5/0 в концентрации Т: Ж = 1: 4. Считается, что полученная поверхность наиболее приготовлена для эпитаксиального покрытия .
5.5. МЕТОДЫ ИССЛЕДОВАНИЯ СТРОЕНИЯ И ГЛУБИНЫ НАРУШЕННОГО СЛОЯ
Существующие методы, которые применяются для изучения нарушенного слоя, можно условно разделить на две группы: методы, с помощью которых непосредственно наблюдают макро- и микро-структурные изменения в поверхностном слое; методы, с помощью которых исследуют изменение физико-механических или химических свойств материала по мере удаления поверхностного слоя, возникшего в результате механической обработки. Методы 1-й и 2-й групп характеризуются различной сложностью постановки экспериментов, но каждый из них предусматривает последовательное изучение отдельных слоев, все более отстоящих от поверхности. Послойное удаление нарушенного слоя производят полированием или химическим травлением.
1. В методе, основанном на изменении скорости травления поверхности в зависимости от степени ее разрушения, самая высокая скорость отмечается при травлении наружного рельефного слоя. По мере удаления нарушенного слоя скорость травления уменьшается и приближается к скорости травления монокристалла. Толщина слоя, который нужно удалить до получения постоянной скорости травления, принимается за глубину поврежденного слоя. Однако результаты зависят от ряда факторов: типа травите-ля, температуры, скорости перемещения в объеме травителя, освещенности поверхности и т. д. .
2. В методе экзоэлектронной эмиссии поток электронов возникает в запрещенной зоне кристалла с локальных энергетических уровней, соответствующих дефектам структуры. Регистрация экзоэлектронов может осуществляться на воздухе счетчиком типа Гейгера-Мюллера либо в вакууме вторично-электронными умножителями. Наиболее четко зависимость экзоэмиссии от глубины нарушенного слоя выражена в диапазоне 0,3-6,0 мкм .
3. Рентгеновский метод аномального прохождения рентгеновских лучей (АПРЛ) состоит в том, что совершенный кристалл в положении брэгговского отражения пропускает рентгеновские лучи, почти не поглощая их, в то время как в неотражающем положении сильно их поглощает. Поэтому реальные кристаллы, имеющие несовершенства кристаллической решетки, вызывают уменьшение АПРЛ. Таким же образом на АПРЛ влияют нарушения кристаллической решетки, возникающие в результате механической обработки. Эффект АПРЛ можно регистрировать по изме-
295
нению интегральной интенсивности или фотографическим путем (снятием топограмм) .
Методика определения глубины нарушенного слоя по полуширине кривой качания приведена в работе . Как известно, полуширина кривой качания зависит от внутризеренной структуры кристалла - размера блоков мозаики и их разориентации. Механическая обработка приводит к нарушению монокристаллического строения, в частности, к интенсивному дроблению кристалла на блоки и их разориентации. Появление разориентированных блоков приводит к уширению кривой качания ftfeZ-отражения по сравнению с кривой для кристалла без подобных разрушений. Между величиной нарушенного слоя и полушириной кривой качания существует линейная зависимость.
4. В методе, основанном на эффекте Тваймана , пластину, одинаково обработанную с обеих сторон, полируют с одной стороны и измеряют стрелу прогиба. По кривой, характеризующей зависимость стрелы прогиба от толщины слоя, удаленного с другой стороны пластины, определяют глубину поврежденного слоя.
5. В методе, основанном на зависимости микротвердости от глубины нагружения индентора, измерения производят на приборе ПМТ-3. С постепенным удалением нарушенного слоя значения микротвердости повышаются и достигают постоянного значения, не зависящего от нагружения индентора .

Значение глубины и окультуренности пахотного слоя почвы для растений.

Мощность пахотного слоя почвы - один из показателей плодородия и ее окультуренности. Чем она больше, тем выше ее плодородие и урожайность сельскохозяйственных культур.

Получение высоких и устойчивых урожаев сельскохозяйственных культур возможно только при условии бесперебойного и полного удовлетворения потребностей растений в воде и пище. Вся пища (кроме углекислоты воздуха) и вода поступают в растение через корни из почвы. Понятно поэтому то исключительное влияние, которое уделяется в земледелии созданию наиболее благоприятных почвенных условий для роста и развития сельскохозяйственных растений. Все агротехнические приемы, из которых слагаются системы обработки почвы и применения удобрений в севообороте, направлены в конечном счете на это. Под влиянием агротехнических мероприятий, осуществляемых при сельскохозяйственном использовании почвы, ее свойства существенным образом меняются. Непосредственное воздействие приемов обработки и применение удобрений на состояние и свойства почвы ограничиваются верхним ее слоем определенной мощности. Он постоянно подвергается воздействию почвообрабатывающих орудий. Рыхление и оборачивание этого слоя орудиями почвообработки обеспечивает более сильное влияние на его свойства. Вносимые в почву органические и минеральные удобрения распределяются, в этом слое почвы отмечается интенсивная деятельность почвенных микроорганизмов, которым принадлежит ведущая роль в жизни почвы, создании условий ее плодородия.

На старопахотных дерново-подзолистых почвах особенно отчетливо видно, насколько резко верхний (пахотный) слой отличается от нижележащих слоев почвы как по внешнему виду, так и по свойствам. Он характеризуется более рыхлым сложением, повышенным содержанием гумуса и доступных растениям питательных веществ, пониженной кислотностью, высокой биологической активностью.

Возрастание мощности пахотного слоя положительно влияет на водный режим почвы. При его увеличении почва полнее может использовать выпадающие осадки. На почве с глубоким высокоокультуренным пахотным слоем, даже при выпадении дождей ливневого характера большая часть выпадающих осадков, как правило, успевает проникнуть в толщу этого слоя и задерживается в нем, в дальнейшем избыток влаги сверх полевой влагоемкости постепенно уходит в нижележащие слои. Наоборот, на почве с мелким пахотным слоем при тех же условиях рельефа при одинаковом состоянии поверхности и одинаковом сельскохозяйственном использовании почвы дожди ливневого характера обычно бывают мало полезными, так как большая часть выпавших осадков стекает по поверхности почвы. При повышенном количестве осадков почва с мелким пахотным слоем быстро переувлажняется, растения на ней страдают от избытка влаги и недостатка кислорода в почве. В то же время на расположенной рядом почве с глубоким пахотным слоем, хотя эта почва содержит больше влаги, чем первая, растения развиваются нормально, никаких признаков страдания их от избытка влаги не обнаруживается. На такой почве культурные растения лучше противостоят засухе и меньше страдают от избыточных дождей.

С увеличением мощности пахотного слоя улучшаются условия питания культурных растений. Даже в очень бедной почве содержание питательных веществ обычно в сотни раз превышает те их количества, какие используются сельскохозяйственными растениями ежегодно при самых высоких урожаях. Несмотря на такие большие запасы питательных веществ в почве, растения далеко не всегда имеют возможность своевременно и полностью удовлетворять свои потребности в пище. Преобладающая часть необходимых для растений питательных веществ находится в почве в недоступных формах - в органических остатках, в перегное, в составе почвенных микроорганизмов, а также в труднорастворимых минеральных соединениях. Лишь в результате переработки этих составных частей почвы микроорганизмами, а также распада тел отмерших микроорганизмов питательные вещества получаются в форме легкорастворимых соединений, доступных растениям. Эта полезная деятельность почвенных микроорганизмов может протекать нормально лишь при благоприятных для них почвенных условиях -при наличии в почве нужной им пищи, тепла, влаги, воздуха (кислорода), и при отсутствии повышенной кислотности почвы. В сильно уплотненной или переувлажненной почве вследствие недостатка кислорода жизнедеятельность полезных для растений микроорганизмов подавляется. В таких условиях в почве развивается другая группа микроорганизмов, продукты жизнедеятельности которых не только не используются сельскохозяйственными растениями для питания, но могут даже отрицательно сказаться на росте и развитии.

Количество микроорганизмов в почве исключительно велико. Но в таких громадных количествах почвенные микроорганизмы развиваются при благоприятных условиях температуры и влажности только в пахотном слое. В нижележащих слоях почвы деятельность микроорганизмов резко ослабляется. Преобладающая часть почвенных микроорганизмов нуждается в органическом веществе как источнике, необходимом для их жизнедеятельности энергии и как основном источнике веществ, нужных им для построения тела.

Подпахотный слой дерново-подзолистых почв, представленный п большинстве случаев подзолистым горизонтом, содержит очень мало органических веществ и микроорганизмы не могут интенсивно развиваться в нем прежде всего вследствие недостатка пищи. Другой причиной сильно подавленной деятельности микроорганизмов в подпахотном слое следует считать недостаток кислорода. Наконец, деятельность микроорганизмов в подпахотном слое часто тормозится вследствие повышенной кислотности почвы этого слоя. По указанным причинам деятельность микроорганизмов в дерново-подзолистых почвах наиболее выражена только в пределах пахотного слоя.

Следовательно, чем больше мощность пахотного слоя, тем больше биологически активный слой, в котором благодаря жизнедеятельности полезных почвенных микроорганизмов бесперебойно от весны до осени готовится необходимая культурным растениям пища.

Повышение мощности пахотного слоя почвы означает увеличение биологически активного слоя и создание больших возможностей для обеспечения сельскохозяйственных растений питательными веществами. Однако было бы грубой ошибкой на этом основании противопоставлять увеличение мощности пахотного слоя применению удобрений. Ранней весной при низкой температуре микроорганизмы не работают. На помощь земледелию приходит промышленность. Она предоставляет сельскому хозяйству минеральные удобрения, которые содержат питательные для растений вещества в доступных для них формах. На окультуренных почвах с глубоким пахотным слоем положительное влияние удобрений на урожай усиливается.

Для нормального почвенного питания сельскохозяйственных растений большое значение имеют мощность развития их корневых систем и распределение корней в почве по глубине. Мощность развития корневых систем зависит от уровня плодородия почвы, от степени ее окультуренное™. На дерново-подзолистых почвах у всех сельскохозяйственных растений основная масса корней (до 80-90 % общей их массы) располагается в пределах пахотного слоя. В этом же слое в течение всех жизни растений находится преобладающая часть тонких корешков, покрытых корневыми волосками, т. е. деятельная, поглощающая часть корневых систем, через которую поступает в растение пища из почвы. Объясняется это тем, что питательные вещества в доступных для растений формах содержатся в основном в пахотном слое. Чем больше мощность пахотного слоя, тем больший объем культурной почвы охватывается густой сетью корней и полнее обеспечивается почвенное питание растений. На почвах с мелким пахотным слоем растения свои потребности в почвенном питании вынуждены покрывать в основном за счет очень ограниченного, явно недостаточного слоя.

На окультуренных почвах с благоприятными физическими и агрохимическими свойствами подпахотных слоев зерновые культуры могут потреблять более 50 % влаги, 20-40 % питательных веществ из подпахотных горизонтов.

При наличии глубокого пахотного слоя случаи гибели озимых культур при неблагоприятных условиях перезимовки бывают исключением. На таких почвах озимые культуры, как правило, благополучно переносят даже самые тяжелые условия перезимовки. Объясняется это лучшими физическими свойствами почвы с глубоким пахотным слоем, отсутствием на них длительного осеннего переувлажнения и хорошим развитием озимых культур в осенний период.

На почвах с глубоким пахотным слоем гораздо реже наблюдается такое явление, как выпадение клеверов при неблагоприятных условиях перезимовки.

С увеличением мощности пахотного слоя повышается эффективность других агротехнических приемов возделывания сельскохозяйственных культур. Следовательно, можно сделать заключение, что только при наличии глубокого пахотного слоя и высокой окультуренности почвы могут быть обеспечены вполне благоприятные условия для роста и развития сельскохозяйственных растений. Они по-разному реагируют на мощность пахотного слоя и глубину обработки. К первой группе культур, хороню отзывающихся на глубокую обработку почвы относятся: свекла, кукуруза, картофель, люцерна, клевер, вика, кормовые бобы, подсолнечник,овощные культуры. Ко второй группе культур, средне отзывающихся на глубокую обработку почвы, относятся: озимая рожь, озимая пшеница, горох, ячмень, овес, кострец безостый. К третьей группе культур, слабо отзывающихся или совсем не отзывающихся на глубокую обработку почвы, относятся лен и яровая пшеница. На почвах с мощным пахотным слоем выше урожайность сельскохозяйственных культур.

Приемы увеличения мощности пахотного слоя. В начале прошлого века па преобладающей части пахотных земель дерново-подзолистых почв глубина пахотного слоя не превышала 14-15 см, а на значительной площади была не более 12 см. За истекший период благодаря росту культуры земледелия, увеличению внесения органических и минеральных удобрении мощность пахотного слоя доведена до 20-22 см. Экономически выгодным считается иметь мощность пахотного слоя 30-35 см. Однако следует иметь в виду, что увеличение мощности пахотного слоя не сводится только к увеличению глубины обработки, обязательным является внесение органических, минеральных и известковых удобрений, посев сидеральных культур.

Технология создания и окультуривания глубокого пахотного слоя дерново-подзолистых почв предусматривает оставление пахотного слоя на прежнем месте, рыхление и окультуривание нижележащих слоев. Особенно важно это соблюдать при неглубоком пахотном слое.

В настоящее время известно несколько способов углубления пахотного слоя почвы.

  • Пропахивание нижележащего слоя почвы с выносом его на поверхность.
  • Полное оборачивание пахотного слоя с одновременным рыхлением части подпахотного.
  • Рыхление на установленную глубину без оборачивания плугом без предплужников и без отвалов или чизельными плугами.
  • Углубление путем одновременной припашки части подпахотного слоя к пахотному и применение рыхления подпахотного.
  • Обработка почвы ярусными плугами с взаимным перемещением горизонтов.

При выборе способа углубления и окультуривания пахотного слоя дерново-подзолистых почв необходимо учитывать следующие показатели: 1) характеристика пахотного слоя (мощность, плодородие, гранулометрический состав); 2) характеристика подпахотных слоев: состав (подзолистый, иллювиальный, материнская порода), глубина, гранулометрический состав, агрофизические и агрохимические свойства (содержание гумуса, элементов питания, реакция среды, содержание подвижного алюминия и закисного железа).

Наиболее доступным способом увеличения мощности пахотного слоя является пропахивание нижележащего слоя почвы с выносом его на поверхность. Он осуществляется обычными плугами. За один прием следует припахивать не более 2-3 см подзолистого слоя. На почвах с пахотным слоем более 20 см его углубляют на 1/5 его толщины. Чтобы не допустить снижения урожайности сельскохозяйственных культур от пропахивания подзолистого горизонта к пахотному, необходимо разово внести 80-100 т/га органических удобрений, известковые удобрения для нейтрализации избыточной кислотности и минеральные удобрения в соответствии с планируемой урожайностью. Такое внесение позволит улучшить физические свойства и биологическую активность почвы и нейтрализацию кислотности. Лучшим местом углубления пахотного слоя путем припашки подзолистого является паровое поле, предназначенное под посев озимой ржи и поля под посадку картофеля. Нельзя углублять пахотный слой с вовлечением в него подзолистого горизонта под такие культуры, как сахарная свекла, кукуруза, пшеница и лен, даже с внесением удобрений, поскольку это приводит к снижению их урожая.

На почвах с неглубоким залеганием подзолистого горизонта при углублении пахотного слоя нужно проявлять некоторую осторожность, учитывая, что подзолистый слой отличается неблагоприятными физическими и биологическими свойствами, почти не содержит в усвояемой форме питательных веществ для растений и имеет повышенную кислотность. В этом случае подзолистый горизонт не выворачивают и не перемешивают с пахотным, а только рыхлят. При таком углублении пласт оборачивается на глубину гумусового слоя, а лежащий под ним горизонт рыхлится почвоуглубителями примерно на 10-15 см. В дальнейшем по мере окультуривания подзолистого горизонта можно частично припахивать его к пахотному обычным плугом. Не следует припахивать глеевый горизонт к гумусовому, так как он содержит закисные соли, вредные для сельскохозяйственных растений. На таких почвах хорошие результаты получают от углубления пахотного слоя плугами с почвоуглубителями, плугами без отвалов, плугами с вырезными отвалами и чизельными. Углубление путем рыхления на месте нижнего слоя (без выворачивания) в значительной степени повышает аэрацию, усиливает жизнедеятельность микроорганизмов и накапливает в почве усвояемые для растений продукты питания как за счет разложения органических веществ, так и за счет окисления минеральных соединений. Одним из эффективных способов постепенного увеличения мощности пахотного слоя является углубление путем одновременной припашки части пахотного слоя к пахотному и применение рыхления подпахотного.

Коренным образом можно изменить пахотный слой при вспашке ярусными плугами с взаимным перемещением почвенных горизонтов. Этот способ может быть эффективным при наличии в хозяйстве достаточного количества органических, минеральных и известковых удобрений, в противном случае может быть значительное снижение урожайности сельскохозяйственных культур. Увеличение мощности пахотного слоя требует больших материальных и денежных затрат, что не всегда под силу хозяйствам.

Результаты многолетних стационарных и краткосрочных полевых опытов свидетельствуют о том, что нет достаточно веских оснований для рекомендации постепенно углублять пахотный слой до 25-30 см и более. Углубление целесообразно лишь на хорошо окультуренных пахотных землях в условиях интенсивного применения удобрений, периодического известкования и возделывания культур, хорошо отзывающихся на глубокие обработки.

В среднем за ротацию семипольного севооборота без углубления получено 59,1 ц/га к.ед., по углублению на 5 см - 59,8 ц/га, т. е. продуктивность практически одинаковая. Однако углубление пахотного слоя за счет припашки подзолистого приводит к большим затратам ГСМ на его проведение, а на почвах, засоренных камнями, и к поломке плугов.

В большинстве хозяйств республики гумусовый слой пахотных почв составляет 20 см и более, углублять его за счет припашки подзолистого неэффективно, а следует его окультуривать и только на переуплотненных участках разуплотнять подпахотные слои безотвальными орудиями, лучше с наклонными стойками. На дерновоподзолистых легкосуглинистых почвах с мощностью гумусового слоя 20-22 см можно получать зерновых 4,5-6,0 т/га, картофеля - 35-40, корнеплодов - 60-80, сена многолетних трав - 10-12 т/га.

Смотреть все

(12) НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ СПОСОБ ИЗМЕРЕНИЯ ГЛУБИНЫ НАРУШЕННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЕВОЙ ПОЛУПРОВОДНИКОВОЙ ПЛАСТИНЫ(71) Заявитель Научно-исследовательское конструкторско-технологическое республиканское унитарное предприятие Белмикросистемы(72) Авторы Чигирь Григорий Григорьевич Ануфриев Леонид Петрович Ухов Виктор Анатольевич Пеньков Анатолий Петрович(73) Патентообладатель Научно-исследовательское конструкторско-технологическое республиканское унитарное предприятие Белмикросистемы(57) Способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающий локальное удаление нарушенного слоя, выявление границы раздела нарушенного слоя и монокристаллического кремния, измерение глубины нарушенного слоя, отличающийся тем, что удаление нарушенного слоя осуществляют распылением пучком ионов с атомным номером от 7 до 18, энергией от 3 до 10 кэВ, направленным под углом 10-450 к поверхности пластины, выявление границы раздела осуществляют путем регистрации интенсивности выхода Оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода Оже-электронов для монокристаллического кремния, а глубину нарушенного слоя определяют измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины., 1999. - . 10.05.. - . 315.1222147 , 1994.01559983 , 1995.02006985 1, 1994.02156520 2, 2000.0587091 1, 1994.2001044253, 2001. Изобретение относится к технологии производства полупроводниковых приборов и интегральных микросхем (ИМС), в частности к технологическому процессу создания кремниевых пластин, и может быть использовано при измерении глубины нарушенного слоя на поверхности кремниевой пластины. 5907 1 Известен способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, основанный на использовании метода эллипсометрии и позволяющий эффективно исследовать свойства нарушенного слоя, его толщину, качество обработанных подложек 1. Однако данный способ позволяет лишь фиксировать наличие нарушенного слоя на поверхности пластины сравнением измеренных эллипсометрических констант и их значением для кремния без нарушенного слоя. Для определения глубины нарушенного слоя необходимо последовательно удалять поверхностные слои кремния и производить эллипсометрический контроль. Это значительно усложняет способ контроля,так как эти операции несовместимы в одном процессе. Кроме того, при эллипсометрическом контроле используется излучение видимого диапазона длин волн (обычно 0,65 мкм),которое проникает в поверхностные слои кремния на глубину около 0,5 мкм. Это приводит к тому, что разрешение по глубине у данного метода составляет 0,5 мкм, и он не позволяет измерять глубину нарушенных слоев меньше нескольких микрон. Наиболее близким к предлагаемому техническому решению является способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающий локальное удаление нарушенного слоя, выявление границы раздела нарушенного слоя и монокристаллического кремния, измерение глубины нарушенного слоя 2. Данный способ позволяет измерять глубину нарушенного слоя на поверхности кремниевых пластин в диапазоне 5-200 мкм. В этом способе локальное удаление нарушенного слоя на всю его глубину производится изготовлением косого шлифа под малым углом к контролируемой поверхности кремниевой пластины (от 10 до 10). Шлиф изготавливается методом механической полировки, которая не вносит каких-либо механических повреждений на поверхности косого шлифа. Полировка производится в щелочной суспензии субмикронных частиц (рН от 10 до 12). Перед изготовлением косого шлифа поверхность кремниевой пластины покрывается слоем нитрида кремния толщиной не менее 1 мкм. Этот слой защищает поверхность пластины и обеспечивает формирование качественной (резкой) границы шлифа на поверхности пластины. После изготовления косого шлифа производится измерение величины его угла. Выявление нарушенного слоя на поверхности шлифа производится методом химического декорирования - травление образца в травителе на основе хромовой кислоты (75 г триоксида хрома растворяются в 1 л воды). Контроль границы раздела нарушенный слой-монокристаллический кремний производится на декорированном шлифе под оптическим микроскопом в режиме интерференционного контраста при увеличении 100-500 х и затем производится измерение протяженности (длины) нарушенного слоя на поверхности шлифа (расстояние от границы шлифа на поверхности кремниевой пластины до границы раздела нарушенный слой-монокристаллический кремний). Глубина нарушенного слоя рассчитывается умножением значения измеренной длины нарушенного слоя на поверхности шлифа на величину тангенса угла шлифа. Существенным недостатком данного способа является отсутствие возможности проводить измерения нарушенных слоев глубиной менее 5 мкм. Это обусловлено тем, что граница раздела нарушенный слой-монокристаллический кремний в данном способе выявляется недостаточно четко и воспроизводимо. Она определяется не автоматически по количественному критерию, а устанавливается оператором по качественным признакам непосредственно под микроскопом. Отсутствие четкого критерия определения границы раздела нарушенный слой-монокристаллический кремний не позволяет проводить измерения тонких нарушенных слоев (менее 5 мкм) из-за большой погрешности измерений. В основу изобретения положена задача повышения точности и расширение диапазона измерений тонких (менее 5 мкм) нарушенных слоев за счет воспроизводимого, автоматического определения границы раздела нарушенный слой-монокристаллический кремний. Сущность изобретения заключается в том, что в способе измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающем 2 5907 1 локальное удаление нарушенного слоя, выявление границы раздела нарушенного слоя и монокристаллического кремния, измерение глубины нарушенного слоя, удаление нарушенного слоя осуществляют распылением пучком ионов с атомным номером от 7 до 18,энергией от 3 до 10 кэВ, направленным под углом 10-45 к поверхности пластины, выявление границы раздела осуществляют путем регистрации интенсивности выхода Ожеэлектронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода Оже-электронов для монокристаллического кремния, а глубину нарушенного слоя определяют измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины. Использование пучка ионов позволяет прецизионно (с высокой точностью) контролировать снятие слоев. При этом режим распыления выбирается таким, чтобы он не вносил нарушений в поверхностные слои кремния (не изменял нарушенный слой) и не приводил к неоднородности распыления (формирование микрорельефа распыления) при использовании пучка ионов, направленного под углом менее 10 к поверхности кремниевой пластины, наблюдается неоднородность удаления слоев и формирование в процессе распыления на поверхности пластины микрорельефа распыления. Формирование микрорельефа распыления снижает точность контроля, т.к. с такой поверхности измерительный сигнал формируется одновременно с различных по глубине точек при использовании пучка ионов, направленного под углом более 45 к поверхности кремниевой пластины, наблюдается внедрение падающих ионов в поверхностные слои,что приводит к дополнительному дефектообразованию и увеличению нарушенного слоя. При использовании углов падения пучка ионов в диапазоне 10-45 увеличения нарушенного слоя и формирования микрорельефа на поверхности кремниевой пластины не наблюдается при выборе пучка ионов с атомным номером менее 7 (легкие ионы) наблюдается внедрение падающих ионов в поверхностные слои, что приводит к дополнительному дефектообразованию и увеличению нарушенного слоя при выборе пучка ионов с атомным номером более 18 (тяжелые ионы) наблюдается дополнительное дефектообразование и увеличение нарушенного слоя. При использовании пучка ионов с атомным номером от 7 до 18 производится однородное распыление поверхности образца без внесения дополнительных дефектов и увеличения нарушенного слоя при выборе пучка ионов с энергией менее 3 кэВ наблюдается неоднородность удаления слоев и формирование в процессе распыления на поверхности пластины микрорельефа распыления при выборе пучка ионов с энергией более 10 кэВ наблюдается дополнительное дефектообразование и увеличение нарушенного слоя. При использовании пучка ионов с энергией 3-10 кэВ производится однородное распыление поверхности образца без внесения дополнительных дефектов и увеличения нарушенного слоя. Регистрация интенсивности выхода Оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контролировать наличие нарушенного слоя на поверхности кремниевой пластины. Причем локальность контроля по глубине (усреднение по глубине) из-за особенностей метода Оже-спектроскопии составляет всего 1-2 нм. Интенсивность выхода Оже-электронов определяется на Ожеспектрометре автоматически и по мере удаления нарушенного слоя она постепенно возрастает. После удаления нарушенного слоя величина интенсивности выхода достигает максимальной величины, равной значению для монокристаллического кремния (кремний без нарушенного слоя). Значение величины интенсивности выхода для монокристаллического кремния зависит от конструктивных особенностей используемого Ожеспектрометра и она определяется экспериментально. Периодически ее значение может уточняться. Таким образом, контроль интенсивности выхода Оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контро 3 5907 1 лировать наличие нарушенного слоя на поверхности кремниевой пластины и обеспечить автоматическое установление границы раздела нарушенный слой-монокристаллический кремний на поверхности пластины с погрешностью по глубине, не превышающей 2,0 нм,и дальнейшее удаление поверхностных слоев кремния прекращается. Таким образом, на поверхности образца формируется ступенька на верхней ее части находится исходная поверхность анализируемой кремниевой пластины с нарушенным слоем, на нижней части поверхность с удаленным нарушенным слоем. Величина этой ступеньки равна глубине нарушенного слоя. Глубина нарушенного слоя определяется измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины, например, с помощью микропрофилометра. Современные микропрофилометры позволяют определять величину ступеньки с погрешностью 1 нм. Пример конкретного выполнения. Заявленный способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающий удаление нарушенного слоя распылением пучком ионов с атомным номером от 7 до 18, энергией от 3 до 10 кэВ, направленным под углом 10-45 к поверхности пластины, выявление границы раздела регистрацией интенсивности выхода Оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода Оже-электронов для монокристаллического кремния,определение глубины нарушенного слоя измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины, проиллюстрируем на примере анализа кремниевых пластин КЭФ-4.5 диаметром 100 мм (эти пластины широко используются в серийном производстве КМОП ИМС). Анализ проводился на двух пластинах одна пластина была взята после операции шлифовки алмазными пастами АСМ 0,5-1,0, вторая - после операции финишной химико-механической полировки суспензией аэросила (поверхность соответствовала 14-му классу). Каждая анализируемая пластина КЭФ-4.5 разрезалась на две равные части. На одной части пластины проводились измерения глубины нарушенного слоя по предлагаемому способу (в 10 точках вблизи центра пластины), на второй - по способу-прототипу (в 10 точках на шлифе вблизи центра пластины). Сравнительные параметры приведены в таблице, где указаны номер процесса по порядкуугол падения пучка ионоватомный номер ионов в пучке (т.) энергия ионов в пучке (Е, кэВ) измеренная глубина нарушенного слоя (, мкм). Она определялась как среднее значение глубины нарушенного слоя из 10-ти измерений абсолютная погрешность определения глубины нарушенного слоя слоя. Она определялась из следующего выражения (удвоенное значение величины среднеквадратичного отклонения из 10 измерений) относительная погрешность определения глубины нарушенного слоя (/). Анализ проводился на Оже-спектрометре -660 (ф., США), величина интенсивности выхода Оже-электронов с поверхности монокристаллического кремния(без нарушенного слоя) для данного спектрометра составляла 2,37105 Оже-электрон./сек(определялась экспериментально), величина интенсивности выхода Оже-электронов с поверхности кремниевой пластины после шлифовки составляла 5,2104 Оже-электрон./сек,величина интенсивности выхода Оже-электронов с поверхности кремниевой пластины после полировки составляла 1,15105 Оже-электрон./сек. Удаление поверхностных слоев кремния распылением пучком ионов и измерение интенсивности выхода Оже-электронов производилось непосредственно на Оже-спектрометре. Для проведения измерений интен 4 5907 1 сивности процесс распыления останавливали. Измерения высоты ступеньки проводились на микропрофилометре(минимальная измеряемая глубина ступеньки - 5 нм, погрешность измерения не хуже 1 нм). Данные, приведенные в таблице, показывают, что измерения глубины нарушенного слоя по предлагаемому способу имеют более высокую точность за счет автоматического,воспроизводимого определения границы раздела нарушенный слой-монокристаллический кремний. Сравнительные измерения на пластинах с глубиной нарушенного слоя более 5 мкм показывают, что для предлагаемого способа погрешность измерений составляет 2,2 , а по способу-прототипу - 5,5 . Повышение точности измерений обеспечивает расширение диапазона измерений тонких (менее 5 мкм) нарушенных слоев. Из таблицы видно, что нарушенные слой глубиной 0,3 мкм контролируются с погрешностью 5 . По способу-прототипу такие слои контролю не подлежат (погрешность контроля превышает 100). Таблицаат Е, кэВ/100,Кремниевая пластина КЭФ-4.5 после шлифовки поверхности 1 10 7 3 8,9 0,2 2,2 2 25 15 7 9 0,2 2,2 3 45 18 10 9,1 0,2 2,2 4 8 5 7 7 0,5 7,1 5 47 15 12 10 0,4 4.0 6 Прототип 9 0,5 5,5 Кремниевая пластина КЭФ-4.5 после финишной полировки поверхности 7 10 7 3 0,29 0,015 5,2 8 25 15 7 0,3 0,015 5,0 9 45 18 10 0,31 0,015 4,8 10 8 5 2 0,2 0,04 20 11 25 22 12 0,4 0,03 7,5 12 Прототип Не измер. 1,0 100 Таким образом, предлагаемый способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины в сравнении со способом прототипа позволяет повысить точность измерений более чем в 2 раза и обеспечивает расширение диапазона измерений тонких (менее 5 мкм) нарушенных слоев за счет воспроизводимого,автоматического определения границы раздела нарушенного слоя и монокристаллического кремния. Источники информации 1. Луфт Б.Д. Физико-химические методы обработки поверхности полупроводников. Москва Радио и связь, 1982. - С. 16-18. 2.950-98.1999, . 10.05,. - . 315. Национальный центр интеллектуальной собственности. 220034, г. Минск, ул. Козлова, 20.