Алгоритм дейкстры пример. Алгоритм дейкстры нахождения кратчайшего пути. Теперь решим эту задачу, причем сложность решения будет O(N log N)

5.4.3. Задача о кратчайшем пути и алгоритм Дейкстры ее решения

Пусть задан орграф G (V , E ), каждой дуге которого поставлено в соответствие число
, называемое длиной дуги .

Определение. Длиной пути называется сумма длин дуг, составляющих этот путь. Задача о кратчайшем пути ставится так.

Вариант 1. Найти длины кратчайших путей (путей минимальной длины) и сами пути от фиксированной вершины s до всех остальных вершин графа.

Вариант 2. Найти длины кратчайших путей и сами пути между всеми парами вершин данного графа.

Если в графе имеются дуги отрицательной длины, задача может не иметь решений (потеряет смысл). Это происходит из-за того, что в графе может присутствовать контур отрицательной длины. Наличие контуров отрицательной длины означает, что длину пути можно сделать равной
. А если контуров отрицательной длины нет, то кратчайшие пути существуют и любой кратчайший путь – это простая цепь.

Заметим, что если кратчайший путь существует, то любой его подпуть – это тоже кратчайший путь между соответствующими вершинами.

Алгоритм Дейкстры решения задачи о кратчайшем пути.

Алгоритм работает с дугами положительной длины и определяет кратчайшие пути от фиксированной вершины s до всех остальных вершин графа. Обозначим эти вершины v 1 , v 2 ,…, v n .

Определение. Назовем вершину u лежащей ближе к вершине s , чем вершина v , если длина кратчайшего пути от s до u меньше длины кратчайшего пути от s до v . Будем говорить, что вершины u и v равноудалены от вершины s , если длины кратчайших путей от s до u и от s до v совпадают.

Алгоритм Дейкстры последовательно упорядочивает вершины графа в смысле близости к вершине s и основан на следующих базовых принципах.

Если длины дуг – положительные числа, то

    ближайшая к s вершина – она сама. Длина кратчайшего пути от s до s равна 0;

    ближайшая к s вершина, отличная от s , лежит от s на расстоянии одной дуги  самой короткой из всех дуг, выходящих из вершины s ;

    любая промежуточная вершина кратчайшего пути от s до некоторой вершины v лежит ближе к s , чем конечная вершина v ;

    кратчайший путь до очередной упорядоченной вершины может проходить только через уже упорядоченные вершины.

Пусть алгоритм уже упорядочил вершины v 1 , v 2 v k . Обозначим через
,
длину кратчайшего пути до вершины v i .

Рассмотрим все дуги исходного графа, которые начинаются в одной из вершин множества
и оканчиваются в еще неупорядоченных вершинах. Для каждой такой дуги, например
, вычислим сумму
. Эта сумма равна длине пути из s в y , в котором вершина v i есть предпоследняя вершина, а путь из s в v i – кратчайший из всех путей, соединяющих s и v i .

Этим самым определены длины всех путей из s в еще не упорядоченные вершины, в которых промежуточными вершинами являются только вершины из числа k ближайших к s . Пусть кратчайший из этих путей оканчивается на вершине w . Тогда w и есть
по близости к s вершина.

Технически действия по алгоритму Дейкстры осуществляются при помощи аппарата меток вершин. Метка вершины v обозначается как
. Всякая метка – это число, равное длине некоторого пути от s до v . Метки делятся на временные и постоянные. На каждом шаге только одна метка становиться постоянной. Это означает, что ее значение равно длине кратчайшего пути до соответствующей вершины, а сама эта вершина упорядочивается. Номер очередной упорядоченной вершины обозначим буквой р .

Описание алгоритма .

Шаг 1. (Начальная установка) . Положить
и считать эту метку постоянной. Положить
,
и считать эти метки временными. Положить
.

Шаг 2. (Общий шаг). Он повторяется n раз, пока не будут упорядочены все вершины графа.

Пересчитать временную метку
всякой неупорядоченной вершины v i , в которую входит дуга, выходящая из вершины р, по правилу

Выбрать вершину с минимальной временной меткой. Если таких вершин несколько, выбрать любую.

Пусть w - вершина с минимальной временной меткой. Считать метку
постоянной и положить
.

Шаги алгоритма Дейкстры удобно оформлять в таблице, каждый столбец которой соответствует вершине графа. Строки таблицы соответствуют повторению общего шага.

Пример . Для графа на рис. 4. найти кратчайшие пути от вершин
до всех остальных вершин графа. Ребра означают две разнонаправленные дуги одинаковой длины.

Решение. В табл. 1 записаны метки вершин на каждом шаге. Постоянные метки помечены знаком «+». Подробно опишем, как вычисляются метки вершин.

    Из вершины 1 выходят дуги в вершины 2, 5, 6. Пересчитываем метки этих вершин и заполним вторую строку таблицы.

Метка вершины 6 становиться постоянной,
.

    Из вершины 6 выходят дуги в еще неупорядоченные вершины 2, 5, 8, 9. Пересчитываем их временные метки

Заполняем 3 строку таблицы. Минимальная из временных меток равна 3 (метка вершины 9),
.

    Из вершины 9 выходят дуги в еще неупорядоченные вершины 5, 8, 11, 12. Тогда

Заполняем четвертую строку таблицы. В этой строке две вершины  2 и 12 имеют минимальные временные метки, равные 4. Сначала упорядочим, например, вершину 2. Тогда на следующем шаге будет упорядочена вершина 12.

Таблица 1

Итак,
.

    Из вершины 2 выходят дуги в еще неупорядоченные вершины 3, 4, 5. Пересчитываем временные метки этих вершин

Заполняем 5 строку таблицы. Минимальная из временных меток равна 4 (метка вершины 12),
.

Заполняем 6 строку таблицы. Минимальная из временных меток равна 5 (метка вершины 5),
.

Заполняем 7 строку таблицы. Становиться постоянной метка вершины 8 (она равна 5),
.

Вершина 11 упорядочивается.

    Из вершины 11 выходят дуги в неупорядоченные вершины 7, 10. Пересчитываем временные метки этих вершин

Вершина 4 получает постоянную метку.

    Из вершины 4 выходят дуги в неупорядоченные вершины 3, 7. Пересчитываем временные метки

Упорядочиваем вершину 3.


Заполняем 12 строку таблицы. На этом шаге упорядочиваем последнюю неупорядоченную вершину 10.

Построение дерева кратчайших путей.

Дерево кратчайших путей – это ориентированное дерево с корнем в вершине S . Все пути в этом дереве – кратчайшие для данного графа.

Дерево кратчайших путей строится по таблице, в него включаются вершина за вершиной в том порядке, в котором они получали постоянные метки. Первым в дерево включается корень – вершина S .

Построим дерево кратчайших путей для нашего примера.

Сначала включаем в дерево корень – вершину 1. Затем в дерево включается дуга (1,6). Следующей была упорядочена вершина 9, длина кратчайшего пути до которой равна 3. Первый раз число 3 появилось в третьей строке, которая заполнялась при
. Следовательно, вершина 6 – предпоследняя вершина кратчайшего пути до вершины 9. Включаем в дерево дугу (6,9) длины 1.

Затем была упорядочена вершина 2 с длиной кратчайшего пути, равной 4. Это число первый раз появилось в третьей строке, которая заполнялась при
. Следовательно, кратчайший путь во вторую вершину проходит по дуге (6,2). Включаем в дерево дугу (6,2) длины 2.

Далее была упорядочена вершина 12,
. Первый раз число 4 появляется в четвертой строке, которая заполнялась при
. В дерево включается дуга (9,12) длины 1. Полное дерево кратчайших путей показано на рис. 5.

Алгоритм Дейкстры может ошибаться, если в графе есть дуги отрицательной длины. Так, отыскивая кратчайшие пути от вершины s =1 для графа на рис. 6, алгоритм сначала упорядочит вершину 3, затем вершину 2 и закончит работу. При этом этот кратчайший путь до вершины 3, с точки зрения алгоритма Дейкстры,  это дуга (1,3) длины 3.

На самом деле, кратчайший путь до вершины 3 состоит из дуг (1,2) и (2,3), длина этого пути равна 5+(-3)=2.

Из-за наличия дуги (2,3) отрицательной длины –3 оказались нарушенными следующие базовые принципы:

    ближайшая к s вершина лежит от нее на расстоянии двух дуг, а не одной;

    промежуточная вершина кратчайшего пути 1-2-3 (вершина 2) лежит дальше от вершины 1 (на расстоянии 5), чем конечная вершина пути 3.

Следовательно, присутствие дуг отрицательной длины усложняет решение задачи о кратчайшем пути и требует использования более сложных алгоритмов, нежели алгоритм Дейкстры.

Дан ориентированный или неориентированный взвешенный граф с вершинами и рёбрами. Веса всех рёбер неотрицательны. Указана некоторая стартовая вершина . Требуется найти длины кратчайших путей из вершины во все остальные вершины, а также предоставить способ вывода самих кратчайших путей.

Эта задача называется "задачей о кратчайших путях с единственным источником" (single-source shortest paths problem).

Алгоритм

Здесь описывается алгоритм, который предложил голландский исследователь Дейкстра (Dijkstra) в 1959 г.

Заведём массив , в котором для каждой вершины будем хранить текущую длину кратчайшего пути из в . Изначально , а для всех остальных вершин эта длина равна бесконечности (при реализации на компьютере обычно в качестве бесконечности выбирают просто достаточно большое число, заведомо большее возможной длины пути):

Кроме того, для каждой вершины будем хранить, помечена она ещё или нет, т.е. заведём булевский массив . Изначально все вершины не помечены, т.е.

Сам алгоритм Дейкстры состоит из итераций . На очередной итерации выбирается вершина с наименьшей величиной среди ещё не помеченных, т.е.:

(Понятно, что на первой итерации выбрана будет стартовая вершина .)

Выбранная таким образом вершина отмечается помеченной. Далее, на текущей итерации, из вершины производятся релаксации : просматриваются все рёбра , исходящие из вершины , и для каждой такой вершины алгоритм пытается улучшить значение . Пусть длина текущего ребра равна , тогда в виде кода релаксация выглядит как:

На этом текущая итерация заканчивается, алгоритм переходит к следующей итерации (снова выбирается вершина с наименьшей величиной , из неё производятся релаксации, и т.д.). При этом в конце концов, после итераций, все вершины графа станут помеченными, и алгоритм свою работу завершает. Утверждается, что найденные значения и есть искомые длины кратчайших путей из в .

Стоит заметить, что, если не все вершины графа достижимы из вершины , то значения для них так и останутся бесконечными. Понятно, что несколько последних итераций алгоритма будут как раз выбирать эти вершины, но никакой полезной работы производить эти итерации не будут (поскольку бесконечное расстояние не сможет прорелаксировать другие, даже тоже бесконечные расстояния). Поэтому алгоритм можно сразу останавливать, как только в качестве выбранной вершины берётся вершина с бесконечным расстоянием.

Восстановление путей . Разумеется, обычно нужно знать не только длины кратчайших путей, но и получить сами пути. Покажем, как сохранить информацию, достаточную для последующего восстановления кратчайшего пути из до любой вершины. Для этого достаточно так называемого массива предков : массива , в котором для каждой вершины хранится номер вершины , являющейся предпоследней в кратчайшем пути до вершины . Здесь используется тот факт, что если мы возьмём кратчайший путь до какой-то вершины , а затем удалим из этого пути последнюю вершину, то получится путь, оканчивающийся некоторой вершиной , и этот путь будет кратчайшим для вершины . Итак, если мы будем обладать этим массивом предков, то кратчайший путь можно будет восстановить по нему, просто каждый раз беря предка от текущей вершины, пока мы не придём в стартовую вершину — так мы получим искомый кратчайший путь, но записанный в обратном порядке. Итак, кратчайший путь до вершины равен:

Осталось понять, как строить этот массив предков. Однако это делается очень просто: при каждой успешной релаксации, т.е. когда из выбранной вершины происходит улучшение расстояния до некоторой вершины , мы записываем, что предком вершины является вершина :

Доказательство

Основное утверждение , на котором основана корректность алгоритма Дейкстры, следующее. Утверждается, что после того как какая-либо вершина становится помеченной, текущее расстояние до неё уже является кратчайшим, и, соответственно, больше меняться не будет.

Доказательство будем производить по индукции. Для первой итерации справедливость его очевидна — для вершины имеем , что и является длиной кратчайшего пути до неё. Пусть теперь это утверждение выполнено для всех предыдущих итераций, т.е. всех уже помеченных вершин; докажем, что оно не нарушается после выполнения текущей итерации. Пусть — вершина, выбранная на текущей итерации, т.е. вершина, которую алгоритм собирается пометить. Докажем, что действительно равно длине кратчайшего пути до неё (обозначим эту длину через ).

Рассмотрим кратчайший путь до вершины . Понятно, этот путь можно разбить на два пути: , состоящий только из помеченных вершин (как минимум стартовая вершина будет в этом пути), и остальная часть пути (она тоже может включать помеченные вершины, но начинается обязательно с непомеченной). Обозначим через первую вершину пути , а через — последнюю вершины пути .

Докажем сначала наше утверждение для вершины , т.е. докажем равенство . Однако это практически очевидно: ведь на одной из предыдущих итераций мы выбирали вершину и выполняли релаксацию из неё. Поскольку (в силу самого выбора вершины ) кратчайший путь до равен кратчайшему пути до плюс ребро , то при выполнении релаксации из величина действительно установится в требуемое значение.

Вследствие неотрицательности стоимостей рёбер длина кратчайшего пути (а она по только что доказанному равна ) не превосходит длины кратчайшего пути до вершины . Учитывая, что (ведь алгоритм Дейкстры не мог найти более короткого пути, чем это вообще возможно), в итоге получаем соотношения:

С другой стороны, поскольку и , и — вершины непомеченные, то так как на текущей итерации была выбрана именно вершина , а не вершина , то получаем другое неравенство:

Из этих двух неравенств заключаем равенство , а тогда из найденных до этого соотношений получаем и:

что и требовалось доказать.

Реализация

Итак, алгоритм Дейкстры представляет собой итераций, на каждой из которых выбирается непомеченная вершина с наименьшей величиной , эта вершина помечается, и затем просматриваются все рёбра, исходящие из данной вершины, и вдоль каждого ребра делается попытка улучшить значение на другом конце ребра.

Время работы алгоритма складывается из:

При простейшей реализации этих операций на поиск вершины будет затрачиваться операций, а на одну релаксацию — операций, и итоговая асимптотика алгоритма составляет:

Реализация :

const int INF = 1000000000 ; int main() { int n; ... чтение n ... vector < vector < pair< int ,int > > > g (n) ; ... чтение графа... int s = ...; // стартовая вершина vector< int > d (n, INF) , p (n) ; d[ s] = 0 ; vector< char > u (n) ; for (int i= 0 ; i< n; ++ i) { int v = - 1 ; for (int j= 0 ; j< n; ++ j) if (! u[ j] && (v == - 1 || d[ j] < d[ v] ) ) v = j; if (d[ v] == INF) break ; u[ v] = true ; for (size_t j= 0 ; j< g[ v] .size () ; ++ j) { int to = g[ v] [ j] .first , len = g[ v] [ j] .second ; if (d[ v] + len < d[ to] ) { d[ to] = d[ v] + len; p[ to] = v; } } } }

Здесь граф хранится в виде списков смежности: для каждой вершины список содержит список рёбер, исходящих из этой вершины, т.е. список пар >, где первый элемент пары — вершина, в которую ведёт ребро, а второй элемент — вес ребра.

По завершению турнира «Новогодняя ночь» спонсор решил отправить $m$ призерам подарки по почте. Зная количество участников $n$ и время доставки почты между некоторыми отделениями «Укрпочты», найти, через какое минимальное время последний из призеров получит свой приз.

Входные данные

Первая строка содержит $3$ числа: количество участников турнира $n$, количество призов спонсора $m$ и количество известных временных сроков доставки между некоторыми из отделений $k$. В следующей строке через пробел указаны номера участников, ставших призёрами.

Далее идет $k$ строк по $3$ числа в каждой с информацией об известных сроках доставки между некоторыми из отделений в формате: $a$ $b$ $t$, где $a$ и $b$ — номера отделений, $t$ $(0 \leqslant t \leqslant 365)$ — время доставки почты между ними. В последней строке находится единственное число — номер почтового отделения, из которого спонсор будет отправлять призы. Известно, что $1 \leqslant n, m, a, b \leqslant 365$.

Выходные данные

Если все призы будут доставлены участникам — вывести в первой строке «The good sponsor!», а в следующей — время, через какое последний из призеров получит свой приз. Если хотя бы один из участников не сможет получить приз — вывести в единственной строке «It is not fault of sponsor…». Фразы выводить без кавычек.

Тесты

Входные данные Выходные данные
1. 3 2 2
2 3
1 2 3
2 3 4
1
The good sponsor!
7
2. 5 1 4
5
1 3 2
2 3 3
4 2 5
4 5 6
1
The good sponsor!
16
3. 7 2 6
1 3
1 3 2
2 4 32
4 5 94
3 1 0
6 2 4
7 2 3
7
It is not fault of sponsor…
4. 5 2 6
1 2
3 1 1
3 4 2
2 4 3
5 1 4
4 5 5
2 3 7
2
The good sponsor!
6

Алгоритм Дейкстры – алгоритм на графах, который находит кратчайший путь между двумя данными вершинами в графе с неотрицательными длинами дуг. Также часто ставится задача расчёта кратчайшего пути от данной вершины до всех остальных. Алгоритм широко применяется в программировании, например, его используют протоколы маршрутизации.

Описание

На вход алгоритма подаётся взвешенный ориентированный граф с дугами неотрицательного веса. На выходе получается набор кратчайших путей от данной вершины до других.

В начале расстояние для начальной вершины полагается равным нулю, а расстояния до всех остальных понимаются бесконечными. Массив флагов, обозначающих то, пройдена ли вершина, заполняется нулями. Затем на каждом шаге цикла ищется вершина с минимальным расстоянием до изначальной и флагом равным нулю. Для неё устанавливается флаг и проверяются все соседние вершины. Если рассчитанное ранее расстояние от исходной вершины до проверяемой больше, чем сумма расстояния до текущей вершины и длины ребра от неё до проверяемой вершины, то расстояние до проверяемой вершины приравниваем к расстоянию до текущей+ребро от текущей до проверяемой. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда расстояние до всех вершин c флагом 0 бесконечно. Последний случай возможен тогда и только тогда, когда граф несвязеный.

Алгоритм Дейкстры в псевдокоде

Вход: С : array of real – матрица длин дуг графа; s – вершина, от которой ищется кратчайший путь и t – вершина, к которой он ищется.

Выход: векторы Т: array of real; и Н: array of 0..р. Если вершина v лежит на кратчайшем пути от s к t, то T[v] - длина кратчайшего пути от s к у; Н[у] - вершина, непосредственно предшествующая у на кратчайшем пути.

Н – массив, в котором вершине n соответствует вершина m, предыдущая на пути к n от s.

T – массив, в котором вершине n соответствует расстояние от неё до s.

X – массив, в котором вершине n соответствует 1, если путь до неё известен, и 0, если нет.

инициализация массивов:

for v from 1 to р do

Т[ v ]: = { кратчайший путь неизвестен }

X[v]: = 0 { все вершины не отмечены}

H[s]: = 0 { s ничего не предшествует }

T[s] : = 0 { кратчайший путь имеет длину 0...}

X[s] : = 1 { ...и он известен } v : = s { текущая вершина }

М: { обновление пометок }

for и ∈ Г(и ) do

if Х[и] = 0 & Т[и] > T[v] + C then

Т[и] : = T[v] + C { найден более короткий путь из s в и через v }

H[u]: = v { запоминаем его }

m : =

v : = 0

{ поиск конца кратчайшего пути }

for и from 1 to p do

if X[u] = 0 &T[u] < t then

v: = u ;

m: = T[u] { вершина v заканчивает кратчайший путь из s

if v = 0 then

stop { нет пути из s в t } end if

if v = t then

stop { найден кратчайший путь из s в t } end if

X[v]: = 1 { найден кратчайший путь из s в v } goto M

Обоснование

Для доказательства корректности алгоритма Дейкстры достаточно заметить, что при каждом выполнении тела цикла, начинающегося меткой М, в качестве v используется вершина, для которой известен кратчайший путь из вершины s. Другими словами, если X[v] = 1, то T[v] = d(s,v), и все вершины на пути (s,v), определяемом вектором Н, обладают тем же свойством, то есть

Vu Т[и] = 1 => Т[и] = d(s,u)&T] = 1.

Действительно (по индукции), первый раз в качестве v используется вершина s, для которой кратчайший путь пустой и имеет длину 0 (непустые пути не могут быть короче, потому что длины дуг неотрицательны). Пусть Т[u] = d(s,u) для всех ранее помеченных вершин и. Рассмотрим вновь помеченную вершину v , которая выбрана из условия T[v] = min Т[и]. Заметим, что если известен путь, проходящий через помеченные вершины, то тем самым известен кратчайший путь. Допустим (от противного), что T[v]> d(s, v), то есть найденный путь, ведущий из s в v, не является кратчайшим. Тогда на этом пути должны быть непомеченные вершины. Рассмотрим первую вершину w на этом пути, такую что T[w]= 0.Имеем: T[w]= d(s,w)⩽d(s>v) < Т[v],что противоречит выбору вершины u.

Временная сложность

Сложность алгоритма Дейкстры зависит от способа нахождения не посещённой вершины с минимальным расстоянием до изначальной, способа хранения множества непосещённых вершин и способа обновления меток. Пусть n количество вершин, а через m - количество рёбер в графе. Тогда в простейшем случае, когда для поиска вершины с минимальным расстоянием до изначальной вершины просматривается всё множество вершин, а для хранения расстояний используется массив, время работы алгоритма - О(n 2). Основной цикл выполняется порядка n раз, в каждом из них на нахождение минимума тратится порядка n операций. На циклы по соседям каждой посещаемой вершины тратится количество операций, пропорциональное количеству рёбер m (поскольку каждое ребро встречается в этих циклах ровно дважды и требует константное число операций). Таким образом, общее время работы алгоритма O(n 2 +m), но, так как m много меньше n(n-1), в конечном счёте получается О(n 2).

Для разреженных графов (то есть таких, для которых m много меньше n²) непосещённые вершины можно хранить в двоичной куче, а в качестве ключа использовать значения расстояний. Так как цикл выполняется порядка n раз, а количество релаксаций (смен меток) не больше m, время работы такой реализации - О(nlogn+mlogn)

Пример

Вычисление расстояний от вершины 1 по проходимым вершинам:

Алгори́тм Де́йкстры (Dijkstra’s algorithm) - алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов. Известен также под названием Сначала Кратчайший Путь (Shortest Path First ).

Примеры

Вариант 1. Дана сеть автомобильных дорог, соединяющих города Новосибирской области. Некоторые дороги односторонние. Найти кратчайшие пути от Новосибирска до каждого города области (если двигаться можно только по дорогам).

Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелёта из A в B может быть не равна стоимости перелёта из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула.

Формальное определение

Дан взвешенный ориентированный граф G (V , E ) без петель и дуг отрицательного веса. Найти кратчайшие пути от некоторой вершины a графа G до всех остальных вершин этого графа.

Неформальное объяснение

Каждой вершине из V сопоставим метку - минимальное известное расстояние от этой вершины до a . Алгоритм работает пошагово - на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Инициализация . Метка самой вершины a полагается равной 0, метки остальных вершин - бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.

Шаг алгоритма . Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u , имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u , назовем соседями этой вершины. Для каждого соседа вершины u , кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями - пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» - длина пути. Рядом с каждой вершиной красным обозначена метка - длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг . Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

Первый по очереди сосед вершины 1 - вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значение её метки, и длины ребра, идущего из 1-ой в 2-ую, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины - 3-й и 6-й.

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.

Второй шаг . Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 - вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед вершины 2 - вершина 3, так имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9<17, поэтому метка не меняется.

Ещё один сосед вершины 2 - вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояние до 2-ой вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22<, устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещенную.

Третий шаг . Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:

Дальнейшие шаги . Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Завершение выполнения алгоритма . Алгоритм заканчивает работу, когда вычеркнуты все вершины. Результат его работы виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й - 9, до 4-й - 20, до 5-й - 20, до 6-й - 11.

Алгоритм

Обозначения

    V - множество вершин графа

    E - множество ребер графа

    w [ij ] - вес (длина) ребраij

    a - вершина, расстояния от которой ищутся

    U - множество посещенных вершин

    d [u ] - по окончании работы алгоритма равно длине кратчайшего пути изa до вершиныu

    p [u ] - по окончании работы алгоритма содержит кратчайший путь изa вu

Псевдокод

Присвоим

Для всех отличных от a

присвоим

Пусть - вершина с минимальнымd [v ]

Для всех таких, что

еслиd [u ] >d [v ] +w [vu ]то

Описание

В простейшей реализации для хранения чисел d [i ] можно использовать массив чисел, а для хранения принадлежности элемента множеству U - массив булевых переменных.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины. Если в ней расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 . Последний случай возможен тогда и только тогда, когда граф G не связан.

Доказательство правильности

Пусть l(v) - длина кратчайшего пути из вершины a в вершину v. Докажем по индукции, что в момент посещения любой вершины z, d(z)=l(z). База. Первой посещается вершина a. В этот момент d(a)=l(a)=0. Шаг. Пускай мы выбрали для посещения вершину . Докажем, что в этот момент d(z)=l(z). Для начала отметим, что для любой вершины v, всегда выполняется (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P - кратчайший путь из a в z, y - первая непосещённая вершина на P, x - предшествующая ей (следовательно, посещённая). Поскольку путь P кратчайший, его часть, ведущая из a через x в y, тоже кратчайшая, следовательно l(y)=l(x)+w(xy). По предположению индукции, в момент посещения вершины x выполнялось d(x)=l(x), следовательно, вершина y тогда получила метку не больше чем d(x)+w(xy)=l(x)+w(xy)=l(y). Следовательно, d(y)=l(y). С другой стороны, поскольку сейчас мы выбрали вершину z, её метка минимальна среди непосещённых, то есть . Комбинируя это с , имеем d(z)=l(z), что и требовалось доказать.

Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент d=l для всех вершин.