Основные отличия между жк и элт мониторами. Что лучше — ЖК или ЭЛТ-монитор

С 1902 года с трубкой Брауна работает Борис Львович Розинг . 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

В начале и середине XX века значительную роль в развитии ЭЛТ сыграли Владимир Зворыкин , Аллен Дюмонт и другие.

Устройство и принцип работы

Общие принципы

Устройство чёрно-белого кинескопа

В баллоне 9 создан глубокий вакуум - сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер .

Для того, чтобы создать электронный луч 2 , применяется устройство, именуемое электронной пушкой . Катод 8 , нагреваемый нитью накала 5 , испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде (модуляторе ) 12 можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки 3 с сердечником 11 ), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом 14 , представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ анод представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт.

Далее луч проходит через отклоняющую систему 1 , которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.

Электронный луч попадает в экран 10 , покрытый люминофором 4 . От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

Люминофор от электронов приобретает отрицательный заряд, и начинается вторичная эмиссия - люминофор сам начинает испускать электроны. В результате вся трубка приобретает отрицательный заряд. Для того, чтобы этого не было, по всей поверхности трубки находится соединённый с общим проводом слой аквадага - проводящей смеси на основе графита (6 ).

Кинескоп подключается через выводы 13 и высоковольтное гнездо 7 .

В чёрно-белых телевизорах состав люминофора подбирают таким, чтобы он светился нейтрально-серым цветом. В видеотерминалах, радарах и т. д. люминофор часто делают жёлтым или зелёным для меньшего утомления глаз.

Угол отклонения луча

Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40 градусов, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин. У первых советских телевизионных кинескопов с круглым экраном угол отклонения составлял 50 градусов, у чёрно-белых кинескопов более поздних выпусков был равен 70 градусам, начиная с 60-х годов увеличился до 110 градусов (один из первых подобных кинескопов-43ЛК9Б). У отечественных цветных кинескопов составляет 90 градусов.

При увеличении угла отклонения луча уменьшаются габариты и масса кинескопа, однако, увеличивается мощность, потребляемая узлами развёртки. В настоящее время в некоторых областях возрождено применение 70-градусных кинескопов: в цветных VGA мониторах большинства диагоналей. Также угол в 70 градусов продолжает применяться в малогабаритных чёрно-белых кинескопах (например, 16ЛК1Б), где длина не играет такой существенной роли.

Ионная ловушка

Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы , которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 60 гг. применялись ионная ловушка, обладающая крупным недостатком: её правильная установка - довольно кропотливая операция, а при неправильной установке изображение отсутствует. В начале 60 гг. был разработан новый способ защиты люминофора: алюминирование экрана, кроме того позволившее вдвое повысить максимальную яркость кинескопа, и необходимость в ионной ловушке отпала.

Задержка подачи напряжения на анод либо модулятор

В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа к этому моменту успевает разогреться.

Внедрение в узлы строчной развёртки полностью полупроводниковой схемотехники породило проблему ускоренного износа катодов кинескопа по причине подачи напряжения на анод кинескопа одновременно с включением. Для борьбы с этим явлением разработаны любительские узлы, обеспечивающие задержку подачи напряжения на анод либо модулятор кинескопа. Интересно, что в некоторых из них, несмотря на то, что они предназначены для установки в полностью полупроводниковые телевизоры, в качестве элемента задержки использована радиолампа. Позднее начали выпускаться телевизоры промышленного производства, в которых такая задержка предусмотрена изначально.

Развёртка

Чтобы создать на экране изображение, электронный луч должен постоянно проходить по экрану с высокой частотой - не менее 25 раз в секунду. Этот процесс называется развёрткой . Есть несколько способов развёртки изображения.

Растровая развёртка

Электронный луч проходит весь экран по строкам. Возможны два варианта:

  • 1-2-3-4-5-… (построчная развёртка);
  • 1-3-5-7-…, затем 2-4-6-8-… (чересстрочная развёртка).

Векторная развёртка

Электронный луч проходит вдоль линий изображения.

Цветные кинескопы

Устройство цветного кинескопа. 1 -Электронные пушки. 2 - Электронные лучи. 3 - Фокусирующая катушка. 4 - Отклоняющие катушки. 5 - Анод. 6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 - Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

Цветной кинескоп отличается от чёрно-белого тем, что в нём три пушки - «красная», «зелёная» и «синяя» (1 ). Соответственно, на экран 7 нанесены в некотором порядке три вида люминофора - красный, зелёный и синий (8 ).

На красный люминофор попадает только луч от красной пушки, на зелёный - только от зелёной, и т. д. Это достигается тем, что между пушками и экраном установлена металлическая решётка, именуемая маской (6 ). В современных кинескопах маска выполнена из инвара - сорта стали с небольшим коэффициентом температурного расширения.

Типы масок

Существует два типа масок:

  • собственно теневая маска, которая существует двух видов:
    • Теневая маска для кинескопов с дельтаобразным расположением электронных пушек. Часто, особенно в переводной литературе, упоминается как теневая решётка . В настоящее время применяется в большинстве мониторных кинескопов. Телевизионные кинескопы с маской данного типа ныне не производятся, однако, такие кинескопы можно встретить в телевизорах прошлых лет (59ЛК3Ц, 61ЛК3Ц, 61ЛК4Ц);
    • Теневая маска для кинескопов с планарным расположением электронных пушек. Известна также, как щелевая решётка . В настоящее время применяется в подавляющем большинстве телевизионных кинескопов (25ЛК2Ц, 32ЛК1Ц, 32ЛК2Ц, 51ЛК2Ц, 61ЛК5Ц, зарубежные модели). В мониторных кинескопах почти не встречается, за исключением моделей Flatron;
  • апертурная решётка (Mitsubishi Diamondtron). Эта маска, в отличие от остальных видов, состоит из большого количества проволок , натянутых вертикально. Принципиальное отличие маски такого типа заключается в том, что она не ограничивает пучок электронов, а фокусирует его. Прозрачность апертурной решетки составляет примерно 85% против 20% у теневой маски. Кинескопы с такой маской применяются и в мониторах, и в телевизорах. Предпринимались попытки создания таких кинескопов в 70-е годы и в СССР (например 47ЛК3Ц).
  • особняком стоят цветные кинескопы специального типа - однолучевые хромоскопы, в частности, 25ЛК1Ц . По устройству и принципу действия они разительно отличаются от иных видов цветных кинескопов. Несмотря на явные преимущества, включая пониженную потребляемую мощность, сравнимую с аналогичным показателем чёрно-белого кинескопа с диагональю того же размера, широкого распространения такие кинескопы не получили.

Среди этих масок нет явного лидера: теневая обеспечивает высокое качество линий, апертурная даёт более насыщенные цвета и высокий к.п.д. Щелевая сочетает достоинства теневой и апертурной, но склонна к муарам .

Типы решёток, способы замера шага на них

Чем меньше элементы люминофора, тем более высокое качество изображения способна дать трубка. Показателем качества изображения является шаг маски .

  • Для теневой решётки шаг маски - расстояние между двумя ближайшими отверстиями маски (соответственно, расстояние между двумя ближайшими элементами люминофора одного цвета).
  • Для апертурной и щелевой решётки шаг маски определяется как расстояние по горизонтали между щелями маски (соответственно, горизонтальное расстояние между вертикальными полосами люминофора одного цвета).

В современных мониторных ЭЛТ шаг маски находится на уровне 0,25 мм. Телевизионные кинескопы, просмотр изображения на которых осуществляется с большего расстояния, используют шаги порядка 0,8 мм.

Сведение лучей

Так как радиус кривизны экрана много больше расстояния от него до электронно-оптической системы вплоть до бесконечности в плоских кинескопах, а без применения специальных мер точка пересечения лучей цветного кинескопа находится на постоянном расстоянии от электронных пушек, необходимо добиться того, чтобы эта точка находилась точно на поверхности теневой маски, в противном случае образуется рассовмещение трёх цветовых составляющих изображения, увеличивающееся от центра экрана к краям. Чтобы этого не происходило, необходимо должным образом сместить электронные лучи. В кинескопах с дельтаобразным расположением пушек это делается специальной электромагнитной системой, управляемой отдельно устройством, которое в старых телевизорах была вынесена в отдельный блок - блок сведения - для периодических регулировок. В кинескопах с планарным расположением пушек регулировка производится при помощи специальных магнитов, расположенных на горловине кинескопа. Со временем, особенно у кинескопов с дельтаобразным расположением электронных пушек, сведение нарушается и нуждается в дополнительной регулировке. Большинство компаний по ремонту компьютеров предлагают услугу повторного сведения лучей монитора.

Размагничивание

Необходимо в цветных кинескопах для снятия влияющей на качество изображения остаточной или случайной намагниченности теневой маски и электростатического экрана. Размагничивание происходит благодаря возникновению в так называемой петле размагничивания - кольцеобразной гибкой катушке большого диаметра, расположенной на поверхности кинескопа - импульса быстропеременного затухающего магнитного поля. Для того, чтобы этот ток после включения телевизора постепенно уменьшался, используются терморезисторы . Многие мониторы дополнительно к терморезисторам содержат реле , которое по окончании процесса размагничивания кинескопа отключает питание этой цепи, чтобы терморезистор остыл. После этого можно специальной клавишей, либо, чаще, особой командой в меню монитора, вызвать срабатывание этого реле и провести повторное размагничивание в любой момент, не прибегая к отключению и включению питания монитора.

Тринескоп

Тринескопом называется конструкция, состоящая из трёх чёрно-белых кинескопов, светофильтров и полупрозрачных зеркал (либо дихроичных зеркал, объединяющих функции полупрозрачных зеркал и фильтров), используемая для получения цветного изображения.

Применение

Кинескопы используются в системах растрового формирования изображения: различного рода телевизорах , мониторах , видеосистемах. Осциллографические ЭЛТ наиболее часто используются в системах отображения функциональных зависимостей: осциллографах , вобулоскопах, также в качестве устройства отображения на радиолокационных станциях, в устройствах специального назначения; в советские годы использовались и в качестве наглядных пособий при изучении устройства электроннолучевых приборов в целом. Знакопечатающие ЭЛТ используются в различной аппаратуре специального назначения.

Обозначение и маркировка

Обозначение отечественных ЭЛТ состоит из четырёх элементов:

  • Первый элемент: число, указывающее диагональ прямоугольного либо диаметр круглого экрана в сантиметрах;
  • Второй элемент: предназначение ЭЛТ, в частности, ЛК - кинескоп телевизионный, ЛМ - кинескоп мониторный, ЛО - трубка осциллографическая;
  • Третий элемент: число, указывающие номер модели данной трубки с данной диагональю;
  • Четвёртый элемент: буква, указывающая цвет свечения экрана, в частности, Ц - цветной, Б - белого свечения, И - зелёного свечения.

В особых случаях к обозначению может добавляться пятый элемент, несущий дополнительную информацию.

Пример: 50ЛК2Б - чёрно-белый кинескоп с диагональю экрана 50 см, вторая модель, 3ЛО1И - осциллографическая трубка с диаметром экрана зелёного свечения 3 см, первая модель.

Воздействие на здоровье

Электромагнитное излучение

Это излучение создаётся не самим кинескопом, а отклоняющей системой. Трубки с электростатическим отклонением, в частности, осциллографические, его не излучают.

В мониторных кинескопах для подавления этого излучения отклоняющую систему часто закрывают ферритовыми чашками. Телевизионные кинескопы такой экранировки не требуют, поскольку зритель обычно сидит на значительно большем расстоянии от телевизора, чем от монитора.

Ионизирующее излучение

В кинескопах присутствует ионизирующее излучение двух видов.

Первое из них - это сам электронный луч, представляющий собой, по сути, поток бета-частиц низкой энергии (25 кЭв). Наружу это излучение не выходит, и опасности для пользователя не представляет.

Второе - тормозное рентгеновское излучение, которое возникает при бомбардировке экрана электронами. Для ослабления выхода этого излучения наружу до полностью безопасных величин стекло легируют свинцом (см. ниже). Однако, в случае неисправности телевизора или монитора, приводящей к значительному повышению анодного напряжения, уровень этого излучения может увеличиться до заметных величин. Для предотвращения таких ситуаций блоки строчной развёртки оборудуют узлами защиты.

В отечественных и зарубежных телевизорах цветного изображения, выпущенных до середины 1970-х годов, могут встречаться дополнительные источники рентгеновского излучения - стабилизирующие триоды, подключаемые параллельно кинескопу, и служащие для стабилизации анодного напряжения, а значит, и размеров изображения. В телевизорах «Радуга-5» и «Рубин-401-1» используются триоды 6С20С, в ранних моделях УЛПЦТ - ГП-5. Поскольку стекло баллона такого триода значительно тоньше, чем у кинескопа, и не легировано свинцом, он является значительно более интенсивным источником рентгеновского излучения, чем сам кинескоп, поэтому его помещают в специальный стальной экран. В более поздних моделях телевизоров УЛПЦТ используются иные методы стабилизации высокого напряжения, и этот источник рентгеновского излучения исключён.

Мерцание

Монитор Mitsubishi Diamond Pro 750SB (1024x768, 100 Гц), снятый с выдержкой 1/1000 с. Яркость искусственно завышена; показана реальная яркость изображения в разных точках экрана.

Луч ЭЛТ-монитора, формируя изображение на экране, заставляет светиться частицы люминофора. До момента формирования следующего кадра эти частицы успевают погаснуть, поэтому можно наблюдать «мерцание экрана». Чем выше частота смены кадров, тем менее заметно мерцание. Низкая частота ведет к усталости глаз и наносит вред здоровью.

У большинства телевизоров на базе электронно-лучевой трубки ежесекундно сменяется 25 кадров, что с учётом чересстрочной развёртки составляет 50 полей (полукадров) в секунду (Гц). В современных моделях телевизоров эта частота искусственно завышается до 100 герц. При работе за экраном монитора мерцание чувствуется сильнее, так как при этом расстояние от глаз до кинескопа намного меньше, чем при просмотре телевизора. Минимальной рекомендуемой частотой обновления экрана монитора является частота 85 герц. Ранние модели мониторов не позволяют работать с частотой развёртки более 70-75 Гц. Мерцание ЭЛТ явно можно наблюдать боковым зрением.

Нечёткое изображение

Изображение на электронно-лучевой трубке является размытым по сравнению с другими видами экранов. Считается, что размытое изображение - один из факторов, способствующих усталости глаз у пользователя.

В настоящее время (2008 год) в задачах, не требовательных к цветопередаче, с точки зрения эргономики ЖК-мониторы , подключенные через цифровой разъём DVI, безусловно, предпочтительнее.

Высокое напряжение

В работе ЭЛТ применяется высокое напряжение. Остаточное напряжение в сотни вольт, если не принимать никаких мер, может задерживаться на ЭЛТ и схемах «обвязки» неделями. Поэтому в схемы добавляют разряжающие резисторы, которые делают телевизор вполне безопасным уже через несколько минут после выключения.

Вопреки распространённому мнению, напряжением анода ЭЛТ нельзя убить человека из-за небольшой мощности преобразователя напряжения - будет лишь ощутимый удар. Однако, и он может оказаться смертельным при наличии у человека пороков сердца. Он может также приводить к травмам, включая, летальные, косвенным образом, когда, отдёрнув руку, человек касается других цепей телевизора и монитора, содержащих чрезвычайно опасные для жизни напряжения - а такие цепи присутствуют во всех моделях телевизоров и мониторов, использующих ЭЛТ.

Ядовитые вещества

Любая электроника (в том числе ЭЛТ) содержит вещества, вредные для здоровья и окружающей среды. В числе их: свинцовое стекло, соединения бария в катодах , люминофоры .

Начиная со второй половины 60-х годов опасная часть кинескопа прикрывается специальным металлическим взрывозащитным бандажом , выполненным в виде цельнометаллической штампованной конструкции либо намотанной в несколько слоёв ленты. Такой бандаж исключает возможность самопроизвольного взрыва. В некоторых моделях кинескопов дополнительно использовалась защитная плёнка, покрывавшая экран.

Несмотря на применение защитных систем, не исключается поражение людей осколками при умышленном разбивании кинескопа. В связи с этим при уничтожении последнего для безопасности предварительно разбивают штенгель - технологическую стеклянную трубку в торце горловины под пластмассовым цоколем, через которую при производстве осуществляется откачка воздуха.

Малогабаритные ЭЛТ и кинескопы с диаметром или диагональю экрана до 15 см опасности не представляют и взрывозащитными приспособлениями не оснащаются.

  • Графекон
  • Передающая телевизионная трубка преобразует световые изображения в электрические сигналы.
  • Моноскоп передающая электронно-лучевая трубка, преобразующая единственное изображение, выполненное непосредственно на фотокатоде, в электрический сигнал. Применяелся для передачи изображения телевизионной испытательной таблицы.
  • Кадроскоп электронно-лучевая трубка с видимым изображением, предназначенная для настройки блоков разверток и фокусировки луча в аппаратуре, использующей электронно-лучевые трубки без видимого изображения (графеконы, моноскопы, потенциалоскопы). Кадроскоп имеет цоколевку и привязочные размеры, аналогичные электронно-лучевой трубке, используемой в аппаратуре. Более того, основная ЭЛТ и кадроскоп подбираются по параметрам с очень высокой точностью и поставляются только комплектом. При настройке вместо основной трубки подключают кадроскоп.
  • в энциклопедии Кругосвет Электроника

    ЖК мониторы появились практически в каждом компьютерном магазине, причем по приемлемой цене. Цены уменьшились примерно в два раза по сравнению с тем, что было год назад. И они продолжают свое стремительное падение. В конце 2000 года цена за ЖК монитор составляла примерно $1100, сейчас же средненький дисплей можно купить за $550. Модели начального уровня продаются даже дешевле, иногда менее $300. Некоторые модели уже преодолели нижнюю планку $250, хотя их придется поискать. Уменьшение цены – это прекрасно, но что еще больше радует, ЖК дисплеи за последний год сильно продвинулись в технологическом плане. И хотя по качеству картинки ЖК мониторы до сих пор не могут догнать ЭЛТ собратьев, данный разрыв постоянно сокращается.

    Первое, и самое главное улучшение – в ЖК мониторах увеличился угол обзора. Именно угол обзора являлся самым слабым местом ЖК мониторов. В лучших моделях вертикальный угол обзора достиг значения от 90 до 160 градусов. Но здесь существует довольно много подводных камней, так что разные модели сильно отличаются по углу обзора. Что еще более важно, улучшилось и количество цветов. В 2000 году вы могли найти модели, которые способны были отображать лишь 16-битный цвет. Сейчас же практически любой ЖК монитор поддерживает 24-битный цвет. Хотя с практической точки зрения, этому 24-битному цвету еще очень далеко до ЭЛТ мониторов.

    Среди улучшений не лишним будет отметить и время реакции транзисторов, сильно выросшее за год. Как объявили некоторые производители, время реакции новых мониторов в два раза быстрее предыдущего поколения. В результате еще один огромный недостаток ЖК мониторов, послесвечение, практически сошел на нет. Так что сейчас на ЖК мониторе можно вполне комфортно работать с графическими приложениями и даже играть. Кстати, мы чуть не забыли упомянуть про яркость и контрастность – они также постоянно улучшаются и приближаются к результатам ЭЛТ мониторов.

    Несмотря на примерно равные цены и безупречную технологию, ЖК монитор имеет свои минусы по сравнению с ЭЛТ. Некоторые пользователи вообще никогда не купят себе ЖК монитор по многим причинам. Попытаемся выделить плюсы и минусы ЖК и ЭЛТ мониторов.


    Жидкие кристаллы или электронно-лучевая трубка?

    Первое преимущество ЖК монитора – вы забываете о проблемах с геометрией. В этих мониторах нет искажений, трапецеидальных дефектов и проблем с яркостью. Картинка геометрически безупречна. Дизайнеры, фанаты точной графики, без ума от таких мониторов. К сожалению, ЖК монитор имеет очень серьезные недостатки, которые заставят любого художника придерживаться старого доброго кинескопа.

    Недостаток 1

    Контрастность лучших ЭЛТ-мониторов составляет 700:1. Лучшие же ЖК мониторы могут похвастаться лишь 450:1. К тому же нередки модели с контрастностью 250:1 или даже 200:1. Низкая степень контрастности приводит к отображению темных оттенков как полностью черных. При этом легко теряются градации цветности картинки.

    Недостаток 2

    Практически все производители сообщают о поддержке 16 млн цветов. Однако матрица в большинстве из них способна отображать 260 000 цветов, причем в этом преуспел Neovo F-15. Получается 16-битный цветной дисплей, хотя монитор объявлен как поддерживающий 24 бита. Впрочем, следует отдать должное – ЖК-дисплеи значительно развились за последние годы, хотя они до сих пор и близко не подошли к цветовому спектру ЭЛТ. Вместо отображения всех цветов, плавно переходящих один в другой, изображение имеет зернистую, пеструю текстуру. Вы получите такой же эффект, если уменьшите количество цветов в Windows.

    Недостаток 3

    Если вы купите новый ЭЛТ дисплей, вы даже не будете пытаться использовать частоту обновления ниже 85 Гц. Но если для ЭЛТ дисплея частота обновления является хорошим критерием качества, то же самое нельзя перенести напрямую на ЖК-дисплей. В электронно-лучевой трубке электронный луч сканирует изображение на экране. Чем быстрее происходит сканирование, тем лучше дисплей, и тем, соответственно, выше частота обновления. В идеальном случае ваш ЭЛТ дисплей должен работать на частоте от 85 до 100 Гц. В ЖК дисплее изображение создается не электронным лучом, а пикселями, состоящими из красного, зеленого и синего подпикселей (триада). Качество изображения зависит от того, насколько быстро пиксели включаются и выключаются. Скорость выключения пикселей часто называют временем реакции. Для протестированных нами мониторов оно варьировалось от 25 до 50 мс. Другими словами, максимальное число изображений, показываемых в одну секунду, находится в диапазоне от 20 до 40, в зависимости от модели.


    ЖК против ЭЛТ: краткое сравнение

    Мы попытались свести в таблицу основные отличия между ЖК и ЭЛТ мониторами.

    ЖК (TFT) ЭЛТ (CRT)
    Яркость (+) от 170 до 300 кд/м 2 (~) от 80 до 120 кд/м 2
    Контрастность (-) от 150:1 до 450:1 (+) от 350:1 до 700:1
    Угол обзора (~) от 90° до 170° (+) более 150°
    Дефекты сведения (+) нет (~) от 0.0079 до 0.0118" (от 0.20 до 0.30 мм)
    Фокусировка (+) очень хорошая (~) от приемлемой до очень хорошей
    Геометрия (+) безупречна (~) возможны ошибки
    "Мертвые" пиксели (-) до 8 (+) нет
    Входной сигнал (+) аналоговый или цифровой (~) только аналоговый
    Возможные разрешения (-) жестко фиксированное разрешение или интерполяция (+) множество
    Гамма (представление цветов для человеческого глаза) (~) удовлетворительно (+) фотографическое качество
    Однообразность (~) часто светлее по краям (~) часто светлее в центре
    Чистота цвета, качество цвета (-) от плохого к среднему (+) очень хорошая
    Мерцание (+) нет (~) незаметно при частоте обновления более 85 Гц
    Подверженность влиянию магнитных полей (+) не подвержен (-) зависит от экранирования, может быть сильно подвержен
    Время реакции пикселей (-) от 20 до 50 мс (+) не заметно
    Энергопотребление (+) от 25 до 40 Вт (-) от 60 до 160 Вт
    Габариты/вес (+) минимальны (-) большие габариты, большой вес

    (+) – преимущество, (~) – средненько, (–) – недостаток


    Основные принципы работы ЖК монитора

    В ЖК мониторах реализовано три различных технологии использования жидких кристаллов - TN+film, IPS и MVA. Но независимо от используемой технологии, все ЖК мониторы опираются на одинаковые фундаментальные принципы работы.

    Одна или более неоновых ламп создают подсветку для освещения дисплея. Число ламп мало в дешевых моделях, в дорогих же используется до четырех. На самом деле использование двух (или больше) неоновых ламп не улучшает качество изображения. Просто вторая лампа служит для обеспечения отказоустойчивости монитора при поломке первой. Таким образом, продляется жизнь монитора, поскольку неоновая лампа может работать только 50 000 часов, в то время как электроника способна выдержать от 100 000 до 150 000 часов.

    Для обеспечения однообразности свечения монитора, свет проходит через систему отражателей перед попаданием на панель. ЖК панель, на самом деле – крайне сложно устройство, хотя это и не заметно с первого взгляда. Панель – это сложное устройство со многими слоями. Отметим два слоя поляризаторов, электроды, кристаллы, цветовые фильтры, пленочные транзисторы и т.д. В 15"" мониторе существует 1024 x 768 x 3 = 2 359 296 субпикселя. Каждая субпиксель управляется транзистором, выдающим свое собственное напряжение. Это напряжение может сильно варьироваться, оно заставляет жидкие кристаллы в каждом субпикселе поворачиваться на определенный угол. Угол поворота определяет количества света, которое проходит через субпиксель. В свою очередь, прошедший свет формирует изображение на панели. Кристалл фактически поворачивает ось поляризации световой волны, поскольку перед попаданием на дисплей волна проходит через поляризатор. Если ось поляризации волны и ось поляризатора совпадают, свет проходит через поляризатор. Если они перпендикулярны, свет не проходит. Более подробную информацию о сути эффекта поляризации можно почерпнуть из учебника физики для 11-го класса.

    Жидкие кристаллы – среднее состояние

    Жидкие кристаллы – это вещество, которое обладает свойствами как жидкости, так и твердого тела. Одно из самых важных свойств жидких кристаллов (именно оно используется в ЖК дисплеях) – возможность изменять свою ориентацию в пространстве в зависимости от прикладываемого напряжения.

    Давайте немного углубимся в историю жидких кристаллов, поскольку она весьма интересна. Как обычно и происходит в науке, жидкие кристаллы были открыты случайно. В 1888 году Фридрих Рейнзер (Friedrich Reinitzer), австрийский ботаник, изучал роль холестерина в растениях. Один из экспериментов заключался в нагреве материала. Ученый обнаружил, что кристаллы становятся мутными и текут при 145,5°, а далее кристаллы превращаются в жидкость при 178,5°. Фридрих поделился открытием с Отто Леманном (Otto Lehmann), немецким физиком, который обнаружил у жидкости свойства кристалла в отношении реакции на свет. С тех пор и пошло название "жидкие кристаллы".

    На иллюстрации показана молекула, обладающая свойствами кристалла – метоксибензидин бутиланалин (methoxybenzilidene butylanaline).


    Увеличенное изображение жидкого кристалла


    TN+Film (скрученный кристалл + пленка)

    Иллюстрация 1: в панелях TN+film жидкие кристаллы выстраиваются перпендикулярно подложке. Слово «пленка» в названии произошло от дополнительного слоя, служащего для увеличения угла обзора.

    TN+film – самая простая технология, поскольку она основана на все тех же скрученных кристаллах. Скрученным кристаллам насчитываются годы – они используются в большинстве TFT панелей, проданных за прошедшие несколько лет. Для улучшения удобочитаемости изображения был добавлен пленочный слой, увеличивающий угол обзора от 90° до 150°. К сожалению, пленка не влияет на уровень контрастности или время реакции, которые остаются плохими.

    Итак, по крайней мере, в теории, дисплеи TN+film являются самыми дешевыми, бюджетными решениями. Процесс их производства мало чем отличается от изготовления предыдущих панелей на скрученных кристаллах. Сегодня не существует более дешевых решений, чем TN+film.

    Вкратце остановимся на принципе работы: если транзистор прикладывает нулевое напряжение к субпикселям, то жидкие кристаллы (а, соответственно, и ось поляризованного света, проходящего сквозь них) поворачиваются на 90° (от задней стенки к передней). Поскольку ось фильтра-поляризатора на второй панели отличается от первого на 90°, свет будет через него проходить. Если полностью задействовать красный, зеленый и синий подпиксели, вместе они создадут белую точку на экране.

    Если же применить напряжение, в нашем случае поле между двумя электродами, то оно уничтожит спиралевидную структуру кристалла. Молекулы выстроятся в направлении электрического поля. В нашем примере они станут перпендикулярны подложке. В данном положении свет не может пройти через субпиксели. Белая точка превращается в черную.

    У дисплея на скрученных кристаллах существует ряд недостатков.

    Во-первых, инженеры уже очень долгое время борются за то, чтобы заставить жидкие кристаллы выстраиваться строго перпендикулярно подложке при включении напряжения. Именно по этой причине старые ЖК дисплеи не могли отображать четкий черный цвет.

    Во-вторых, если транзистор перегорает, он более не может прикладывать напряжение к своим трем субпикселям. Это важно, поскольку нулевое напряжение означает яркую точку на экране. По этой причине «мертвые» ЖК пиксели очень яркие и заметные.

    Что касается 15"" мониторов, то для них разработана только одна технология на смену TN+film – MVA (про нее чуть позже). Эта технология дороже TN+film, зато она превосходит TN+film почти по всем позициям. Однако мы упоминаем "почти", поскольку в ряде случаев TN+film работает лучше MVA.


    IPS (In-Pane Switching или Super-TFT)

    Иллюстрация 2: если приложено напряжение, молекулы выстраиваются параллельно подложке.

    Технология IPS была разработана Hitachi и NEC. Она стала одной из первых ЖК технологий, призванных сгладить недостатки TN+film. Но, несмотря на расширения угла обзора до 170°, остальные функции не сдвинулись с места. Время реакции этих дисплеев изменяется от 50 до 60 мс, а отображение цветов – посредственное.

    Если к IPS не прикладывается напряжение, то жидкие кристаллы не поворачиваются. Ось поляризации второго фильтра всегда перпендикулярна оси первого, так что свет в такой ситуации не проходит. Экран демонстрирует практически безупречный черный цвет. Так что в этой области IPS имеет явное преимущество перед TN+film дисплеями – если сгорает транзистор, то «мертвый» пиксель будет не ярким, а черным. Когда на субпиксели подается напряжение, два электрода создают электрическое поле и заставляют кристаллы поворачиваться перпендикулярно их предыдущей позиции. После чего свет может проходить.

    Самое плохое, что создание электрического поля в системе с подобным расположением электродов потребляет большое количество энергии, но что еще хуже, для выстраивания кристаллов необходимо некоторое время. По этой причине IPS мониторы зачастую, если не всегда, имеют большее время реакции по сравнению с TN+film собратьями.

    С другой же стороны, точное выстраивание кристаллов улучшает угол обзора.


    MVA (Multi-Domain Vertical Alignment)

    Некоторые производители предпочитают использовать MVA, технологию, разработанную Fujitsu. Как они считают, MVA обеспечивает лучший компромисс практически во всем. И вертикальный, и горизонтальный угол обзора составляют 160°; время реакции в два раза меньше, чем у IPS и TN+film – 25 мс; цвета отображаются намного более точно. Но почему же если MVA имеет столько много преимуществ, она не используется повсеместно? Дело в том, что теория не так хороша на практике.

    Сама технология MVA развилась из VA, представленной Fujitsu в 1996 году. В такой системе кристаллы без подачи напряжения выстроены вертикально по отношению ко второму фильтру. Таким образом, свет не может проходить через них. Как только к ним будет приложено напряжение, кристаллы поворачиваются на 90°, пропуская свет и создавая на экране яркое пятно.

    Преимуществами такой системы являются скорость и отсутствие как спиралевидной структуры, так и двойного магнитного поля. Благодаря этому время реакции уменьшилось до 25 мс. Здесь также можно выделить преимущество, которое мы уже упоминали в IPS – очень хороший черный цвет. Главное же проблемой системы VA явилось искажение оттенков при просмотре экрана под углом. Если вывести на экран пиксель какого-либо оттенка, к примеру, светло-красный, то к транзистору будет приложено половинное напряжение. При этом кристаллы повернутся только наполовину. Спереди экрана вы увидите светло-красный цвет. Однако если вы посмотрите на экран сбоку, то в одном случае вы будете смотреть вдоль направления кристаллов, а в другом – поперек. То есть с одной стороны вы увидите чистый красный цвет, а с другой – чистый черный цвет.

    Так что компания пришла к необходимости решения проблемы искажения оттенков и годом позже появилась технология MVA.

    На этот раз каждый субпиксель был разделен на несколько зон. Фильтры-поляризаторы также приобрели более сложную структуру, с бугоркообразными электродами. Кристаллы каждой зоны выстраиваются в своем направлении, перпендикулярно электродам. Задачей такой технологии было создание необходимого количества зон, чтобы пользователь всегда видел только одну зону, неважно с какой точки экрана он смотрит.


    Перед покупкой монитора

    Во время покупки вам следует учесть несколько факторов.

    Максимальный угол обзора должен быть максимально большим, в идеальном случае более или равен 120° по вертикали (горизонтальный угол не так важен).

    Хотя время реакции часто не указывается, чем оно меньше – тем лучше. Время реакции лучших современных ЖК мониторов составляет 25 мс. Но будьте внимательны, поскольку здесь производители часто хитрят. Некоторые указывают время включения и время выключения пикселя. Если время включения 15 мс, а выключения – 25 мс, то время реакции – 40 мс.

    Контрастность и яркость должны быть максимально высокими – по крайней мере, выше чем 300:1 и 200 кд/м 2 .

    Еще одной существенной проблемой ЖК дисплеев являются "мертвые" пиксели. Причем исправить эти светлые (TN+film) или темные "мертвые" пиксели невозможно. Расположившись в неудачных местах, "мертвые" пиксели могут серьезно действовать на нервы. Так что перед покупкой ЖК монитора убедитесь в отсутствии "мертвых пикселей. Тем более что несколько "мертвых" пикселей отнюдь не считаются браком.

    Пусть вас не зачаровывает возможность вертикального поворота дисплея. Да, действительно, вы можете повернуть дисплей на 90°, но для 15"" мониторе такая функция сомнительна, если не сказать бесполезна. Вы можете использовать поворот в следующих ситуациях:

    • создание офисных документов. Действительно, функция поворота здесь может существенно помочь;
    • редактирование изображений, размер которых по высоте больше, чем по ширине. Однако для редактирования изображений намного лучше подходят ЭЛТ мониторы, поскольку они отображают правдивые цвета с лучшим уровнем контрастности;
    • просмотр веб-страниц. Повернутый 15"" монитор имеет горизонтальное разрешение 768 пикселя. Однако большинство веб-страниц рассчитывается под разрешение, по крайней мере, 800 пикселей по горизонтали.

    Какой купить монитор: с электронно-лучевой трубкой (ЭЛТ) или жидкокристаллический (ЖК)? Широко распространено мнение, что ЖК-мониторы "лучше во всех отношениях", в том числе и гораздо безопаснее для здоровья пользователя. И если позволяют финансовые возможности, то надо, однозначно, покупать ЖК-монитор.

    Доля истины в этих утверждениях есть. Принцип, по которому формируется изображение на экране ЖК-монитора, гораздо более "дружественный" для наших глаз: точки на экране электронно-лучевой трубки "вспыхивают", когда по ним пробегает луч развертки, и постепенно гаснут до следующего пробегания луча. Отсюда - мерцание экрана при низкой частоте развертки или при неправильной настройке видеосистемы (т.е. комплекса: монитор + видеокарта). В жидкокристаллическом же мониторе каждая точка "светится" постоянно и непрерывно, меняя свой цвет и яркость лишь тогда, когда поступает соответствующая команда с компьютера.

    Строка развертки в ЭЛТ-мониторе при каждом прохождении луча по экрану может оказаться чуть смещена относительно предыдущего кадра. Это смещение может происходить как из-за неисправности (или низкого качества) монитора, так и под действием внешних помех. Результат - рябь на экране, дрожание или "плавание" изображения. ЖК-мониторы в принципе лишены этих недостатков, так как каждая точка у них расположена на постоянном месте.

    Какое бы замечательное антибликовое покрытие ни было бы нанесено на стеклянный экран электронно-лучевой трубки, полностью избавиться от бликов и отражений не удается. Экраны жидкокристаллических мониторов отражают свет гораздо слабже уже в силу своей конструкции и используемых материалов, поэтому бликов на них практически не бывает.

    Наконец, уровень всех видов излучений у ЖК-мониторов гораздо ниже: ведь главный источник излучений, электромагнитных и электростатических полей - электронно-лучевая трубка, которая в жидкокристаллическом мониторе отсутствует как таковая.

    Но не все так однозначно . Есть немало ситуаций, когда предпочтительнее будет ЭЛТ-монитор.

    Размеры пикселя даже очень хороших ЖК-мониторов пока еще больше, чем даже у средненьких ЭЛТ. Поэтому четкость мелких деталей изображения на жидкокристаллическом мониторе недостаточна.

    Не удалось пока разработчикам ЖК-мониторов добиться качественной цветопередачи, особенно светлых тонов, и высокой контрастности изображения. Даже самые дорогие и навороченные ЖК-мониторы проигрывают по этим параметрам большинству простеньких и дешевеньких ЭЛТ-мониторов.

    Угол зрения, то есть угол, под которым мы можем нормально видеть изображение на экране, у ЖК-мониторов значительно меньше, чем у мониторов с электронно-лучевой трубкой.

    ЖК-мониторы очень заметно теряют качество изображения, если переключить их с "родного" ("оптимального", "рекомендуемого изготовителем") разрешения экрана на другое.

    Наконец, жидкокристаллическим мониторам присуща некоторая инерционность изображения: при очень динамичных "картинках", например, при воспроизведении видео или в "скоростных" играх "подтормаживание" изображения нередко бывает заметно "невооруженным глазом".

    Вообще-то, перечисляя выше недостатки ЖК-мониторов, можно было бы каждый абзац начинать фразой: "Пока еще разработчикам ЖК-мониторов не удалось добиться... того-то... и того-то...". С акцентом на словах "Пока еще". Вполне возможно, что, перечитывая эту страничку через 2-3 года, вы будете усмехаться над тем, что тут написано. Но сейчас, в 2005 году, ситуация именно такова.

    Резюмируя все сказанное выше, можно дать такие рекомендации.

    Жидкокристаллический монитор лучше приобретать, если:

    • вы работаете в основном с текстовой информацией;
    • на вашем рабочем месте плохие условия освещенности, трудно избежать бликов и отражений;
    • монитор будет установлен в зоне действия сильных электромагнитных помех, например, недалеко от силового электрического кабеля;
    • монитором будут пользоваться дети.

    А купить монитор с электронно-лучевой трубкой лучше, если:

    • вы дизайнер или конструктор, то есть работаете в основном с графикой, причем сложной, насыщенной мелкими деталями; вам важна качественная цветопередача, особенно полутонов и оттенков;
    • вы предполагаете частую совместную работу за этим монитором или собираетесь использовать его для каких-то показов, презентаций, то есть если регулярно будут возникать ситуации, когда изображение на экране монитора надо будет одновременно видеть многим людям;
    • вы работаете с часто меняющимися, динамичными картинками, например, занимаетесь монтажом (или просмотром) видео. Или любите поиграть во всякие гонки-стрелялки;
    • если у вас высокой или средней степени близорукость .

    Последние несколько лет, желавшие приобрести монитор для офисного или домашнего компьютера, находились на распутье — что выбрать ЖК- или ЭЛТ-монитор? Пользователи долгое время отдавали предпочтение ЭЛТ-устройствам, чему немало способствовал «эффект размазывания» изображения на ЖК-экране. Но проблема была решена, и в этом году ситуация кардинально изменилась. ЖК-дисплеи активно теснят своих ЭЛТ-собратьев на рынке мониторов и завоевывают сердца покупателей телевизоров. Компании-лидеры в цифровой обработке сигнала, основываясь на предпочтениях покупателей и тенденциях развития технологий и рынка, считают, что будущее именно за ЖК-панелями, которые впоследствии станут универсальными (телевизор и монитор в одном «пакете»).

    У ЭЛТ-мониторов не осталось преимуществ

    Доводов в пользу приобретения дисплея с традиционной электронно-лучевой трубкой (ЭЛТ) несколько лет назад было предостаточно — лучшая цветопередача, больший угол обзора, более высокая контрастность. К тому же, и цены на эти мониторы постоянно уменьшались.

    Бывшие аутсайдеры выходят вперед

    Если несколько лет назад за 15-дюймовый ЭЛТ-монитор приходилось выкладывать более $300, то сейчас за те же деньги можно приобрести хороший 19-дюймовый дисплей таких известных производителей (и не опасаться за качество), как Phillips, Samsung или ViewSonic.

    Конечно, потребителя продолжают смущать разговоры (имеющие под собой вполне реальную почву) о повышенном электромагнитном излучении, наносящем непоправимый ущерб здоровью, а также чрезвычайная громоздкость покупки: ЭЛТ-дисплей может весить десятки килограмм и занимать существенную часть даже на обширном рабочем столе.

    Поначалу доводов в защиту жидкокристаллического дисплея было совсем мало. Помимо отсутствия вредного для здоровья облучения, покупателя больше всего, конечно, привлекали его малые габариты.

    ЖК-монитор скромно устраивается на краешке стола и оставляет достаточно места для других компьютерных аксессуаров, количество которых непрерывно увеличивается. Но по всем другим параметрам — яркости, контрастности, скорости отзыва, цветопередаче — ЖК-мониторы долгое время существенно уступали своим крупногабаритным и тяжелым «трубчатым» собратьям.

    О перспективах ЖК-мониторов на российском и мировом рынке в своем интервью CNews.ru рассказал Дмитрий Кравченко, менеджер по компонентам и периферийному оборудованию Acer CIS Inc.

    CNews.ru: Насколько динамично развивается российский рынок LCD-мониторов?
    Можно с уверенностью утверждать, что рынок ЖК-мониторов в России развивается «взрывообразно». Частные компании и домашние пользователи практически прекратили закупки традиционных ЭЛТ-мониторов с новыми компьютерами в силу очевидных преимуществ ЖК-технологии над ЭЛТ. Кроме того, существует огромный рынок upgrade с ЭЛТ на ЖК.

    CNews.ru: Насколько динамично развивается российский рынок ЖК-мониторов? Какие направления на российском рынке ЖК-мониторов можно назвать перспективными на ближайшие год-два?
    Перспективными направлениями рынка мониторов для домашних и SOHO-пользователей можно считать традиционные и широкоформатные ЖК-мониторы с большой диагональю экрана и многообразием интерфейсов (аналоговый, DVI, AV), c быстродействующими, яркими и контрастными ЖК-панелями. Такие устройства готовы к медиаконвергенции и должны быть востребованы по этой причине. Для корпоративного рынка наиболее перспективными представляются 17-дюймовые традиционные ЖК-мониторы, т.к. они оптимальны по показателю возврата инвестиций (ROI), а также потому, что это тенденция европейского и мирового рынка и что российский не может остаться в стороне.

    CNews.ru: Какова доля государственного сектора и частных компаний среди потребителей ЖК-дисплеев в России? Насколько ситуация на российском рынке отличается от той, что на восточно- и западноевропейском рынке?
    Доля государственного сектора пока минимальна, но здесь также наметилась тенденция переключения спроса с ЭЛТ- на ЖК-технологию. Российский рынок ЖК-мониторов отстает от западноевропейского по причинам экономического характера, но с опозданием повторяет тенденции и закономерности европейского рынка.

    CNews.ru: Как вы оцениваете перспективы развития российского рынка ноутбуков (они имеют ЖК-экран) в связи с тем, что ЖК-экраны постепенно дешевеют, а их качество за последний год-полтора значительно улучшилось?
    Перспективы развития российского рынка ноутбуков оцениваю как самые радужные по упомянутым в вопросе причинам, а также потому, что основное преимущество ноутбуков по сравнению с настольными ПК - мобильность - в связи с этим становится доступным все более широким массам пользователей. Это должно привести к бурному росту рынка мобильных ПК. Ситуация будет подобна той, которая наблюдалась на рынке мобильной связи, когда мобильный телефон стал приемлемым по цене для многих.

    CNews.ru: Какие изменения могут произойти на рынке ЖК-панелей в связи с активной экспансией новых моделей, где решена проблема «эффекта размазывания» изображения на ЖК-экране?
    В дополнение к ответу, данному выше (см. вопрос 2 - CNews ), следует отметить, что все-таки 15-дюймовые ЖК-мониторы в течение некоторого времени останутся наиболее массовым сегментом на российском рынке ЖК-мониторов как наиболее привлекательные по цене.

    CNews.ru: К каким изменениям в быту и в структуре рынке в целом приведет «сращивание» ЖК-мониторов и ЖК-TV?
    До тех пор, пока ЖК-TV значительно дороже ЭЛТ-телевизоров с сопоставимой диагональю экрана, существенных изменений в структуре рынка бытовых телевизоров не произойдет. Вместе с тем, «сращивание» ЖК-мониторов и ЖК-TV должно привести к снижению стоимости ЖК-TV, так как канал сбыта ИТ-продукции более динамичен, чем канал сбыта бытовой техники. Также вышеупомянутое «сращивание» будет стимулировать рост рынка медиацентров на базе ПК.

    CNews.ru: Спасибо.

    Последние несколько лет не пропали даром. Ведущие мировые производители не стояли на месте и вели непрерывную работу по совершенствованию характеристик таких дисплеев, да и цена на них в последние год-полтора существенно снизилась. В результате, сейчас проблема выбора монитора предельно обострилась.

    Впрочем, это относится не только к российским пользователям. Американские и европейские потребители долго не могли определиться со своими предпочтениями, и компании, занимающиеся исследованиями компьютерных рынков, внимательно следили за тем, какие тенденции возобладают.

    Всего пару лет назад на долю ЖК-мониторов в Европе приходилось около 10% рынка. Эксперты полагали, что они еще не скоро смогут завоевать симпатии пользователей.

    Однако в этом году довольно внезапно произошел перелом в настроении европейских потребителей — они решительно снизили объемы покупок ЭЛТ-дисплеев, благодаря чему объемы продаж ЖК-мониторов впервые превысили объемы продаж их собратьев с электронно-лучевой трубкой.

    Чем хорош ЖК-монитор?

    Ускоренный рост интереса к новому поколению дисплеев вызван несколькими факторами. Для корпоративного сектора важным обстоятельством является то, что ЖК-мониторы потребляют существенно меньше электроэнергии. Когда такие мониторы стоят на столах у сотен служащих, экономия для компании может быть довольно ощутимой.

    Потребителя, покупающего монитор для домашнего использования, привлекает то, что, наконец-то, его можно комфортно использовать для 3D-игр. У большинства современных 15-дюймовых моделей время отклика теперь составляет 25 ms, что привело к исчезновению «эффекта размазывания» изображения на экране.

    До 120-150 градусов увеличился угол обзора по горизонтали, а, значит, наблюдать за происходящим на экране может не только игрок, сидящий непосредственно напротив монитора. Кроме того, основное разрешение 15-дюймового ЖК-дисплея (1024 × 768) дает возможность играть как в старые игры, сделанные в разрешении 800×600, так и в практически любые новые игры.

    Еще одним важным обстоятельством, определяющим выбор потребителя, является процесс конвергенции компьютерного монитора и телевизора. В продаже появляется все больше мониторов, которые имеют встроенный TV-тюнер, разъемы типа «скарт» или «тюльпан», пульт дистанционного управления.

    Такое устройство перестает быть монофункциональной приставкой к компьютеру и обретает самостоятельную ценность, что делает его более желанным для всех членов семьи. В итоге, покупка жидкокристаллического дисплея становится все более оправданной, и фирмы-производители почувствовали эту тенденцию в увеличившихся объемах продаж.

    Примечательно, что на прошедшей в этом году в Берлине выставке производителей бытовой техники Internationale Funk-ausstellung (IFA, собирается один раз в два года) ведущие производители телевизоров почти единогласно говорили о том, что будущее — за жидкокристаллическими технологиями. Так, по прогнозам исследовательской компании Display Search, в 2005 году в мире будет продано от 12 до 13 млн. телевизоров с жидкокристаллическими экранами.

    Компании-лидеры в цифровой обработке сигнала (долгое время вкладывавшие в это направление деньги), сейчас интенсивно расширяют старые и открывают новые производства жидкокристаллических TV и мониторов (пока еще эти устройства позиционируют раздельно, как предназначенные для разных сегментов рынка). Например, компания Motorola после почти 30-летнего перерыва (она была пионером на американском рынке производства телевизоров и вышла из этого бизнеса в 1974 году) возобновляет производство TV, но теперь с жидкокристаллическим экраном .

    ЖК-мониторы: продавцы и тенденции

    В приведенной ниже диаграмме отражены объемы продаж 10 известных производителей дисплеев, которые смогли продать на европейском рынке во втором квартале 2003 г. более 100 тыс. единиц ЖК-мониторов каждый.

    (на европейском рынке в 2Q 2003 г.)

    → ЖК против ЭЛТ

    В одно время столкнувшись с проблемой ухудшения зрения, я начал искать причину такого положения дел. Хронологически ухудшения совпали по времени с заменой старенького 15-ти дюймового монитора Samsung 550b на навороченный на то время жидкокристаллический Samsung 730bf.

    Сперва новый монитор очень понравился: плоский, широкий (на 3 дюйма больше чем 15-шка у которой реальная видимая область была 14”), кушает мало электричества, смотрится на порядок лучше на столе.

    Радость быстро прервалась после первого часа работы за новым монитором (думаю это знакомо большинству из тех кто переходил из ЭЛТ на ЖК ). Всё бы хорошо но изображение «какое-то не такое», оно словно «режет глаза ».

    Первое на что начал грешить – настройки монитора. Что я только не крутил, переключал температуру, менял яркость, контрастность, даже кабель пробовал менять. Результат один и тот же – 3 часа работы и глаза в кучу, слезятся, болят .

    Привык, через 2 недели. Если в играх ещё как ни шло, то текст читать на белом фоне по прежнему было тяжело.

    Шло время и спустя пол года у меня начались проблемы с глазами. Я заметил что стало ухудшаться зрение, причём оно флюктуировало (с утра было лучше, а ближе к вечеру ухудшалось). Я начал грешить на общую переутомляемость (студент, тренажерка, вечером в парк) – постоянное недосыпание. Но суть до дела ситуация не улучшалась.

    Конечно я не могу с 100% вероятностью сказать что причина тех проблем, которые начались, именно утомляемость зрения от ЖК монитора , переросшая в последствии в сухость глаз и все вытекающие последствия. Но тот факт что за своей 15-шкой я просидел с 10-го класса по 4-й курс универа (а вообще с компами имею дело с 7-го класса) и не знал ни что такое усталость ни что такое плохое зрение (хотя мог просидеть в сутки и по 10 и по 12 часов) это факт.

    Этот меня насторожило. Я заинтересовался вопросом «а так ли безопасны ЖК мониторы как говорят », ведь теоретически они имеют всё те же недостатки что и обычные ЭЛТ (пиксельность изображения, частота мерцания, плоская картинка, падающий в глаза свет и т.д.).

    Я начал искать ответ в Интернете, и… и нашёл весьма любопытные данные.

    Теоретически, если задуматься.. если бы проблемы не было, 177 модерируемых страниц (состоянием на 22.30.09) по 20 постов каждая с воздуха не взялись бы. Значит проблема существует, и она серозная.

    Уверен перечитывать все 177 страниц у вас вряд ли возникнет желание, тем не менее я (как минимум процентов 80%) всех постов перечитал даже с интересом. И пришел к некоторым выводам:

    1. Так называемая проблема «ЖК мониторов» не выдумка. Она существует и многие вполне адекватные люди чувствуют дискомфорт в той или иной степени (от легкой усталости глаз до практически полной невозможности работать) с TFT мониторами , при этом годами без проблем работавшие с CRT разных моделей и уровней. Но у многих это проявляется (не проявляется) совершенно в разной степени. Но утверждать что более 100 человек (приблизительно столько я насчитал только тех кто отписался в соответствующих ветках на форуме iXBT и overclockers.ru) ошибаются, думаю будет не правильно.

    2. Проблема эта системная, связанная с технологией формирования изображения именно на современных TFT мониторах. Не буду вдаваться в подробности но сюда можно отнести и повышенную яркость, и ультрафиолет излучаемый газоразрядными ртутными лампами подсветки, и частота ШИМ-развертки питания ламп, которая колеблется в значительных пределах от модели к модели (от 150 Гц до 500 Гц), и качество элементной базы в целом современных мониторов (включая матрицу), межпиксельное мерцание и многие другие факторы.

    Чтобы убедиться в том имеют ли мои слова смысл или нет, проделайте следующее:

    — понаблюдайте за собой, чувствуете ли вы усталость при работе за ЖК монитором, сохнут ли у вас глаза при работе, болит ли голова, возможно появляется усталость;

    — откройте любой документ (блокнот или браузер с пустой страницей) с включенным белым фоном, яркость и контрастность можно убрать практически до нуля — или выставить такую, с которой вы привыкли работать.

    Выведите в центре экрана небольшую строку чёрного цвета небольшим размером шрифта. Попытайтесь сконцентрироваться на строке, почитайте её пару раз. В большинстве случаев спустя некоторое время (от пару секунд до нескольких минут) вы начнёте испытывать дискомфорт. А теперь переведите глаза от монитора скажем на принтер, затем обратно повторите. Когда вы убираете взгляд – глаза как будто отдыхают, переводите обратно – как будто пытают напрягаются;

    — в ЖК мониторах есть так называемое «межпиксельное мерцание » (условно), которое также не лучшим образом сказывается на комфорте работы. Более детально про этот эффект можно прочитать вот по этой ссылке — http://www.techmind.org/lcd/ .

    На указанном выше сайте написано примерно следующее:

    Для изменения световой проводимости на «пиксель» (не вдаваясь в тонкости реализации) подается напряжение, при этом на проводимость влияет только абсолютная величина, но не полярность. Характеристика проводимости от напряжения симметрична относительно нулевого потенциала.

    Далее авторы пишут: «чтобы предотвратить поляризацию, и дефект материала жидкого кристалла, полярность напряжения меняется на обратную на «альтернативных видеокадрах», наверняка имеется в виду что-то типа «отрицательно-полярных видеокадров». Потом утверждается, что очень трудно получить одинаковое напряжение разной полярности (а возможно, что и характеристика просто не симметричная), и поэтому возникает эффект мерцания всего экрана с частотой, в половину кадровой развертки, то есть около 30 Гц

    Далее речь идет о том, что если менять полярность сразу для всего экрана, то это мерцание видно очень сильно, поэтому поступают следующим образом — в противофазе меняется только напряжение соседних пикселов, расположенных в матрицах разной конструкции по определенному закону.

    Далее, на этом же сайте есть ссылки на специально сформированные страницы (с помощью простого HTML, можно использовать любой браузер в полноэкранном режиме), с таким изображением, что подсвечиваются только точки одной фазы. Из десятка ссылок нужно выбрать ту, на которой экран будет мерцать. Там же нарисовано, в каком порядке расположены пиксели для этого рисунка, и если экран мерцает, то это и есть ваш тип матрицы.

    Лично проверял на нескольких мониторах – все мерцают.
    То есть фактически мы имеем мигалку, которая мерцает в зависимости от типа изображения и, с изменяющейся интенсивностью от температуры. Сам факт чего уже настораживает.

    Хуже всего то, что производители совсем не хотят видеть эту проблему. Так как с CRT мониторами вполне справедливо покончено, то у людей, испытывающих проблемы с современными TFT, практически нет никакой альтернативы.

    В заключение

    Повторюсь, я не говорю что ЖК мониторы это зло, а ЭЛТ это «рулез» и за ними глаза не устают. Нет. Просто я утверждаю, из собственного опыта, что «ЖК не безвредны » (как об этом пишут многие, мол болят глаза – купите TFT), что они имеют свои недостатки и для определенного процента людей они даже вредны. В чём причина такого положения дел неизвестно, да и врятли мы когда-либо узнаем. Какой резон производителям ЖК мониторов проводить исследования о вреде своих изделий?

    На сегодняшний день я сижу за монитором Neovo E19A со стеклянным фильтром NeoV (представляет собой 3мм стекло перед матрицей и теоретически делает изображение более мягким и слегка изменяет световой спектр – некое подобие компьютерных очков, только на всю поверхность экрана), при этом работаю в компьютерных очках, делаю упражнения и стараюсь больше отдыхать.

    Это не избавляет меня от проблем – я заработал астенопию и постоянную сухость глаз, но факт в том что с этим монитором я в состоянии работать значительно дольше, а изображение мягче и приятней (белый цвет значительно меньше режет глаза, а с включенным ClearTyp’ом на расстоянии 50-60 см пиксельная решётка практически не заметна).

    Казалось бы два абсолютно схожих TFT монитора Samsung 730bf и Neovo E19A, изготовлены теоретически по одинаковым технологиям, с одинаковым типом матрицы (TN), а за одним я могу просидеть максимум 3-4 часа а за другим 8-9 не проблема и это при уже имеющихся проблемах с глазами.

    Мои вам пожелания: ответственно отнеситесь к выбору и покупке монитора, попробуйте монитор в работе и только после этого покупайте. Быть может спасением будет новые типы матриц или новые механизмы подсветки (возможно внешняя подсветка), но пока есть лишь тот факт что дисплеи несут вред, будь то новая TFT или старый CRT.

    Всего вам наилучшего.