Современных программных средств защиты информации в сети. Программные средства защиты информации. Методы, основанные на знании некоторой секретной информации

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные данные о работе

Версия шаблона 1.1

Филиал Нижегородский

Вид работы Электронная письменная предзащита

Название дисциплины ВКР

Тема

Программные средства защиты информации в сетях

Работу выполнил

Ипатов Александр Сергеевич

№ контракта 09200080602012

Введение

1. Основные положения теории информационной безопасности

1.1 Информационная безопасность. Основные определения

1.2 Угрозы информационной безопасности

1.3 Построение систем защиты от угроз нарушения конфиденциальности информации

1.3.1 Модель системы защиты

1.3.2 Организационные меры и меры обеспечения физической безопасности

1.3.3 Идентификация и аутентификация

1.3.4 Разграничение доступа

1.3.5 Криптографические методы обеспечения конфиденциальности информации

1.3.6 Методы защиты внешнего периметра

1.3.7 Протоколирование и аудит

1.4 Построение систем защиты от угроз нарушения целостности

1.4.1 Принципы обеспечения целостности

1.4.2 Криптографические методы обеспечения целостности информации

1.5 Построение систем защиты от угроз нарушения доступности

2. Программные средства защиты информации в КС

2.1 Безопасность на уровне операционной системы

2.2 Криптографические методы защиты

2.3 Шифрование дисков

2.4 Специализированные программные средства защиты информации

2.5 Архитектурные аспекты безопасности

2.6 Системы архивирования и дублирования информации

2.7 Анализ защищенности

Заключение

Глоссарий

Список использованных источников

Список сокращений

Введение

Прогресс подарил человечеству великое множество достижений, но тот же прогресс породил и массу проблем. Человеческий разум, разрешая одни проблемы, непременно сталкивается при этом с другими, новыми. Вечная проблема - защита информации. На различных этапах своего развития человечество решало эту проблему с присущей для данной эпохи характерностью. Изобретение компьютера и дальнейшее бурное развитие информационных технологий во второй половине 20 века сделали проблему защиты информации настолько актуальной и острой, насколько актуальна сегодня информатизация для всего общества.

Еще Юлий Цезарь принял решение защищать ценные сведения в процессе передачи. Он изобрел шифр Цезаря. Этот шифр позволял посылать сообщения, которые никто не мог прочитать в случае перехвата.

Данная концепция получила свое развитие во время Второй мировой войны. Германия использовала машину под названием Enigma для шифрования сообщений, посылаемых воинским частям.

Конечно, способы защиты информации постоянно меняются, как меняется наше общество и технологии. Появление и широкое распространение компьютеров привело к тому, что большинство людей и организаций стали хранить информацию в электронном виде. Возникла потребность в защите такой информации.

В начале 70-х гг. XX века Дэвид Белл и Леонард Ла Падула разработали модель безопасности для операций, производимых на компьютере. Эта модель базировалась на правительственной концепции уровней классификации информации (несекретная, конфиденциальная, секретная, совершенно секретная) и уровней допуска. Если человек (субъект) имел уровень допуска выше, чем уровень файла (объекта) по классификации, то он получал доступ к файлу, в противном случае доступ отклонялся. Эта концепция нашла свою реализацию в стандарте 5200.28 "Trusted Computing System Evaluation Criteria" (TCSEC) ("Критерий оценки безопасности компьютерных систем"), разработанном в 1983 г. Министерством обороны США. Из-за цвета обложки он получил название "Оранжевая книга".

"Оранжевая книга" определяла для каждого раздела функциональные требования и требования гарантированности. Система должна была удовлетворять этим требованиям, чтобы соответствовать определенному уровню сертификации.

Выполнение требований гарантированности для большинства сертификатов безопасности отнимало много времени и стоило больших денег. В результате очень мало систем было сертифицировано выше, чем уровень С2 (на самом деле только одна система за все время была сертифицирована по уровню А1 - Honeywell SCOMP) Коул Э. Руководство по защите от хакеров. - М.: Издательский дом "Вильямс", 2002 - С. 25 .

При составлении других критериев были сделаны попытки разделить функциональные требования и требования гарантированности. Эти разработки вошли в "Зеленую книгу" Германии в 1989 г., в "Критерии Канады" в 1990 г., "Критерии оценки безопасности информационных технологий" (ITSEC) в 1991 г. и в "Федеральные критерии" (известные как Common Criteria - "Общие критерии") в 1992 г. Каждый стандарт предлагал свой способ сертификации безопасности компьютерных систем.

ГОСТ 28147-89 -- советский и российский стандарт симметричного шифрования, введённый в 1990 году, также является стандартом СНГ. Полное название -- «ГОСТ 28147-89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования». Блочный шифроалгоритм. При использовании метода шифрования с гаммированием, может выполнять функции поточного шифроалгоритма.

По некоторым сведениям А. Винокуров. Алгоритм шифрования ГОСТ 28147-89, его использование и реализация для компьютеров платформы Intel x86 (http://www.enlight.ru ) , история этого шифра гораздо более давняя. Алгоритм, положенный впоследствии в основу стандарта, родился, предположительно, в недрах Восьмого Главного управления КГБ СССР (ныне в структуре ФСБ), скорее всего, в одном из подведомственных ему закрытых НИИ, вероятно, ещё в 1970-х годах в рамках проектов создания программных и аппаратных реализаций шифра для различных компьютерных платформ.

С момента опубликования ГОСТа на нём стоял ограничительный гриф «Для служебного пользования», и формально шифр был объявлен «полностью открытым» только в мае 1994 года. История создания шифра и критерии разработчиков по состоянию на 2010 год не опубликованы.

Одна из проблем, связанных с критериями оценки безопасности систем, заключалась в недостаточном понимании механизмов работы в сети. При объединении компьютеров к старым проблемам безопасности добавляются новые. В "Оранжевой книге" не рассматривались проблемы, возникающие при объединении компьютеров в общую сеть, поэтому в 1987 г. появилась TNI (Trusted Network Interpretation), или "Красная книга". В "Красной книге" сохранены все требования к безопасности из "Оранжевой книги", сделана попытка адресации сетевого пространства и создания концепции безопасности сети. К сожалению, и "Красная книга" связывала функциональность с гарантированностью. Лишь некоторые системы прошли оценку по TNI, и ни одна из них не имела коммерческого успеха.

В наши дни проблемы стали еще серьезнее. Организации стали использовать беспроводные сети, появления которых "Красная книга" не могла предвидеть. Для беспроводных сетей сертификат "Красной книги" считается устаревшим.

Технологии компьютерных систем и сетей развиваются слишком быстро. Соответственно, также быстро появляются новые способы защиты информации. Поэтому тема моей квалификационной работы «Программные средства защиты информации в сетях» является весьма актуальной.

Объектом исследования является информация, передаваемая по телекоммуникационным сетям.

Предметом исследования является информационная безопасность сетей.

Основной целью квалификационной работы является изучение и анализ программных средств защиты информации в сетях. Для достижения указанной цели необходимо решить ряд задач:

Рассмотреть угрозы безопасности и их классификацию;

Охарактеризовать методы и средства защиты информации в сети, их классификацию и особенности применения;

Раскрыть возможности физических, аппаратных и программных средств защиты информации в компьютерных сетях (КС), выявить их достоинства и недостатки.

1. Основные положения теории информационной безопасности

1.1 Информационная безопасность. Основные определения

Термин «информация» разные науки определяют различными способами. Так, например, в философии информация рассматривается как свойство материальных объектов и процессов сохранять и порождать определённое состояние, которое в различных вещественно-энергетических формах может быть передано от одного объекта к другому. В кибернетике информацией принято называть меру устранения неопределённости. Мы же под информацией в дальнейшем будем понимать всё то, что может быть представлено в символах конечного (например, бинарного) алфавита.

Такое определение может показаться несколько непривычным. В то же время оно естественным образом вытекает из базовых архитектурных принципов современной вычислительной техники. Действительно, мы ограничиваемся вопросами информационной безопасности автоматизированных систем - а всё то, что обрабатывается с помощью современной вычислительной техники, представляется в двоичном виде.Цирлов В.Л. Основы информационной безопасности автоматизированных систем - «Феникс», 2008 - С. 8

Предметом нашего рассмотрения являются автоматизированные системы. Под автоматизированной системой обработки информации (АС) мы будем понимать совокупность следующих объектов:

1. Средств вычислительной техники;

2. Программного обеспечения;

3. Каналов связи;

4. Информации на различных носителях;

5. Персонала и пользователей системы.

Информационная безопасность АС рассматривается как состояние системы, при котором:

1. Система способна противостоять дестабилизирующему воздействию внутренних и внешних угроз.

2. Функционирование и сам факт наличия системы не создают угроз для внешней среды и для элементов самой системы.

На практике информационная безопасность обычно рассматривается как совокупность следующих трёх базовых свойств защищаемой информации:

? конфиденциальность, означающая, что доступ к информации могут получить только легальные пользователи;

? целостность, обеспечивающая, что во-первых, защищаемая информация может быть изменена только законными и имеющими соответствующие полномочия пользователями, а во-вторых, информация внутренне непротиворечива и (если данное свойство применимо) отражает реальное положение вещей;

? доступность, гарантирующая беспрепятственный доступ к защищаемой информации для законных пользователей.

Деятельность, направленную на обеспечение информационной безопасности, принято называть защитой информации.

Методы обеспечения информационной безопасности (Приложение А) весьма разнообразны.

Сервисы сетевой безопасности представляют собой механизмы защиты информации, обрабатываемой в распределённых вычислительных системах и сетях.

Инженерно-технические методы ставят своей целью обеспечение защиты информации от утечки по техническим каналам - например, за счёт перехвата электромагнитного излучения или речевой информации. Правовые и организационные методы защиты информации создают нормативную базу для организации различного рода деятельности, связанной с обеспечением информационной безопасности.

Теоретические методы обеспечения информационной безопасности, в свою очередь, решают две основных задачи. Первая из них - это формализация разного рода процессов, связанных с обеспечением информационной безопасности. Так, например, формальные модели управления доступом позволяют строго описать все возможные информационные потоки в системе - а значит, гарантировать выполнение требуемых свойств безопасности. Отсюда непосредственно вытекает вторая задача - строгое обоснование корректности и адекватности функционирования систем обеспечения информационной безопасности при проведении анализа их защищённости. Такая задача возникает, например, при проведении сертификации автоматизированных систем по требованиям безопасности информации.

1.2 Угрозы информационной безопасности

При формулировании определения информационной безопасности АС мы упоминали понятие угрозы. Остановимся на нём несколько подробнее.

Заметим, что в общем случае под угрозой принято понимать потенциально возможное событие, действие, процесс или явление, которое может привести к нанесению ущерба чьим-либо интересам. В свою очередь, угроза информационной безопасности автоматизированной системы - это возможность реализации воздействия на информацию, обрабатываемую в АС, приводящего к нарушению конфиденциальности, целостности или доступности этой информации, а также возможность воздействия на компоненты АС, приводящего к их утрате, уничтожению или сбою функционирования.

Классификация угроз может быть проведена по множеству признаков. Приведём наиболее распространённые из них. Цирлов В.Л. Основы информационной безопасности автоматизированных систем - «Феникс», 2008 - С. 10

1. По природе возникновения принято выделять естественные и искусственные угрозы.

Естественными принято называть угрозы, возникшие в результате воздействия на АС объективных физических процессов или стихийных природных явлений, не зависящих от человека. В свою очередь, искусственные угрозы вызваны действием человеческого фактора.

Примерами естественных угроз могут служить пожары, наводнения, цунами, землетрясения и т.д. Неприятная особенность таких угроз - чрезвычайная трудность или даже невозможность их прогнозирования.

2. По степени преднамеренности выделяют случайные и преднамеренные угрозы.

Случайные угрозы бывают обусловлены халатностью или непреднамеренными ошибками персонала. Преднамеренные угрозы обычно возникают в результате направленной деятельности злоумышленника.

В качестве примеров случайных угроз можно привести непреднамеренный ввод ошибочных данных, неумышленную порчу оборудования. Пример преднамеренной угрозы - проникновение злоумышленника на охраняемую территорию с нарушением установленных правил физического доступа.

3. В зависимости от источника угрозы принято выделять:

- Угрозы, источником которых является природная среда. Примеры таких угроз - пожары, наводнения и другие стихийные бедствия.

- Угрозы, источником которых является человек. Примером такой угрозы может служить внедрение агентов в ряды персонала АС со стороны конкурирующей организации.

- Угрозы, источником которых являются санкционированные программно-аппаратные средства. Пример такой угрозы - некомпетентное использование системных утилит.

- Угрозы, источником которых являются несанкционированные программно-аппаратные средства. К таким угрозам можно отнести, например, внедрение в систему кейлогеров.

4. По положению источника угрозы выделяют:

- Угрозы, источник которых расположен вне контролируемой зоны. Примеры таких угроз - перехват побочных электромагнитных излучений (ПЭМИН) или перехват данных, передаваемых по каналам связи; дистанционная фото- и видеосъёмка;

перехват акустической информации с использованием направленных микрофонов.

- Угрозы, источник которых расположен в пределах контролируемой зоны.

Примерами подобных угроз могут служить применение подслушивающих устройств или хищение носителей, содержащих конфиденциальную информацию.

5. По степени воздействия на АС выделяют пассивные и активные угрозы. Пассивные угрозы при реализации не осуществляют никаких изменений в составе и структуре АС.

Реализация активных угроз, напротив, нарушает структуру автоматизированной системы.

Примером пассивной угрозы может служить несанкционированное копирование файлов с данными.

6. По способу доступа к ресурсам АС выделяют:

- Угрозы, использующие стандартный доступ. Пример такой угрозы - несанкционированное получение пароля путём подкупа, шантажа, угроз или физического насилия по отношению к законному обладателю.

- Угрозы, использующие нестандартный путь доступа. Пример такой угрозы - использование недекларированных возможностей средств защиты.

Критерии классификации угроз можно продолжать, однако на практике чаще всего используется следующая основная классификация угроз, основывающаяся на трёх введённых ранее базовых свойствах защищаемой информации:

1. Угрозы нарушения конфиденциальности информации, в результате реализации которых информация становится доступной субъекту, не располагающему полномочиями для ознакомления с ней.

2. Угрозы нарушения целостности информации, к которым относится любое злонамеренное искажение информации, обрабатываемой с использованием АС.

3. Угрозы нарушения доступности информации, возникающие в тех случаях, когда доступ к некоторому ресурсу АС для легальных пользователей блокируется.

Отметим, что реальные угрозы информационной безопасности далеко не всегда можно строго отнести к какой-то одной из перечисленных категорий. Так, например, угроза хищения носителей информации может быть при определённых условиях отнесена ко всем трём категориям.

Заметим, что перечисление угроз, характерных для той или иной автоматизированной системы, является важным этапом анализа уязвимостей АС, проводимого, например, в рамках аудита информационной безопасности, и создаёт базу для последующего проведения анализа рисков. Выделяют два основных метода перечисления угроз:

1. Построение произвольных списков угроз. Возможные угрозы выявляются экспертным путём и фиксируются случайным и неструктурированным образом.

Для данного подхода характерны неполнота и противоречивость получаемых результатов.

2. Построение деревьев угроз. Угрозы описываются в виде одного или нескольких деревьев. Детализация угроз осуществляется сверху вниз, и в конечном итоге каждый лист дерева даёт описание конкретной угрозы. Между поддеревьями в случае необходимости могут быть организованы логические связи.

Рассмотрим в качестве примера дерево угрозы блокирования доступа к сетевому приложению (Приложение Б).

Как видим, блокирование доступа к приложению может произойти либо в результате реализации DoS-атаки на сетевой интерфейс, либо в результате завершения работы компьютера. В свою очередь, завершение работы компьютера может произойти либо вследствие несанкционированного физического доступа злоумышленника к компьютеру, либо в результате использования злоумышленником уязвимости, реализующей атаку на переполнение буфера.

1.3 Построение систем защиты от угроз нарушения конфиденциальности информации

1.3.1 Модель системы защиты

При построении систем защиты от угроз нарушения конфиденциальности информации в автоматизированных системах используется комплексный подход. (Приложение В).

Как видно из приведённой схемы, первичная защита осуществляется за счёт реализуемых организационных мер и механизмов контроля физического доступа к АС. В дальнейшем, на этапе контроля логического доступа, защита осуществляется с использованием различных сервисов сетевой безопасности. Во всех случаях параллельно должен быть развёрнут комплекс инженерно-технических средств защиты информации, перекрывающих возможность утечки по техническим каналам.

Остановимся более подробно на каждой из участвующих в реализации защиты подсистем.

1.3.2 Организационные меры и меры обеспечения физической безопасности

Данные механизмы в общем случае предусматривают:

- развёртывание системы контроля и разграничения физического доступа к элементам автоматизированной системы.

- создание службы охраны и физической безопасности.

- организацию механизмов контроля за перемещением сотрудников и посетителей (с использованием систем видеонаблюдения, проксимити-карт и т.д.);

- разработку и внедрение регламентов, должностных инструкций и тому подобных регулирующих документов;

- регламентацию порядка работы с носителями, содержащими конфиденциальную информацию.

Не затрагивая логики функционирования АС, данные меры при корректной и адекватной их реализации являются крайне эффективным механизмом защиты и жизненно необходимы для обеспечения безопасности любой реальной системы.

1.3.3 Идентификация и аутентификация

Напомним, что под идентификацией принято понимать присвоение субъектам доступа уникальных идентификаторов и сравнение таких идентификаторов с перечнем возможных. В свою очередь, аутентификация понимается как проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности.

Тем самым, задача идентификации - ответить на вопрос «кто это?», а аутентификации - «а он ли это на самом деле?».

Всё множество использующих в настоящее время методов аутентификации можно разделить на 4 большие группы:

1. Методы, основанные на знании некоторой секретной информации.

Классическим примером таких методов является парольная защита, когда в качестве средства аутентификации пользователю предлагается ввести пароль - некоторую последовательность символов. Данные методы аутентификации являются наиболее распространёнными.

2. Методы, основанные на использовании уникального предмета. В качестве такого предмета могут быть использованы смарт-карта, токен, электронный ключ и т.д.

3. Методы, основанные на использовании биометрических характеристик человека. На практике чаще всего используются одна или несколько из следующих биометрических характеристик:

- отпечатки пальцев;

- рисунок сетчатки или радужной оболочки глаза;

- тепловой рисунок кисти руки;

- фотография или тепловой рисунок лица;

- почерк (роспись);

- голос.

Наибольшее распространение получили сканеры отпечатков пальцев и рисунков сетчатки и радужной оболочки глаза.

4. Методы, основанные на информации, ассоциированной с пользователем.

Примером такой информации могут служить координаты пользователя, определяемые при помощи GPS. Данный подход вряд ли может быть использован в качестве единственного механизма аутентификации, однако вполне допустим в качестве одного из нескольких совместно используемых механизмов.

Широко распространена практика совместного использования нескольких из перечисленных выше механизмов - в таких случаях говорят о многофакторной аутентификации.

Особенности парольных систем аутентификации

При всём многообразии существующих механизмов аутентификации, наиболее распространённым из них остаётся парольная защита. Для этого есть несколько причин, из которых мы отметим следующие:

- Относительная простота реализации. Действительно, реализация механизма парольной защиты обычно не требует привлечения дополнительных аппаратных средств.

- Традиционность. Механизмы парольной защиты являются привычными для большинства пользователей автоматизированных систем и не вызывают психологического отторжения - в отличие, например, от сканеров рисунка сетчатки глаза.

В то же время для парольных систем защиты характерен парадокс, затрудняющий их эффективную реализацию: стойкие пароли мало пригодны для использования человеком.

Действительно, стойкость пароля возникает по мере его усложнения; но чем сложнее пароль, тем труднее его запомнить, и у пользователя появляется искушение записать неудобный пароль, что создаёт дополнительные каналы для его дискредитации.

Остановимся более подробно на основных угрозах безопасности парольных систем. В общем случае пароль может быть получен злоумышленником одним из трёх основных способов:

1. За счёт использования слабостей человеческого фактора. Методы получения паролей здесь могут быть самыми разными: подглядывание, подслушивание, шантаж, угрозы, наконец, использование чужих учётных записей с разрешения их законных владельцев.

2. Путём подбора. При этом используются следующие методы:

- Полный перебор. Данный метод позволяет подобрать любой пароль вне зависимости от его сложности, однако для стойкого пароля время, необходимое для данной атаки, должно значительно превышать допустимые временные ресурсы злоумышленника.

- Подбор по словарю. Значительная часть используемых на практике паролей представляет собой осмысленные слова или выражения. Существуют словари наиболее распространённых паролей, которые во многих случаях позволяют обойтись без полного перебора.

Подбор с использованием сведений о пользователе. Данный интеллектуальный метод подбора паролей основывается на том факте, что если политика безопасности системы предусматривает самостоятельное назначение паролей пользователями, то в подавляющем большинстве случаев в качестве пароля будет выбрана некая персональная информация, связанная с пользователем АС. И хотя в качестве такой информации может быть выбрано что угодно, от дня рождения тёщи и до прозвища любимой собачки, наличие информации о пользователе позволяет проверить наиболее распространённые варианты (дни рождения, имена детей и т.д.).

3. За счёт использования недостатков реализации парольных систем. К таким недостаткам реализации относятся эксплуатируемые уязвимости сетевых сервисов, реализующих те или иные компоненты парольной системы защиты, или же недекларированные возможности соответствующего программного или аппаратного обеспечения.

При построении системы парольной защиты необходимо учитывать специфику АС и руководствоваться результатами проведённого анализа рисков. В то же время можно привести следующие практические рекомендации:

- Установление минимальной длины пароля. Очевидно, что регламентация минимально допустимой длины пароля затрудняет для злоумышленника реализацию подбора пароля путём полного перебора.

- Увеличение мощности алфавита паролей. За счёт увеличения мощности (которое достигается, например, путём обязательного использования спецсимволов) также можно усложнить полный перебор.

- Проверка и отбраковка паролей по словарю. Данный механизм позволяет затруднить подбор паролей по словарю за счёт отбраковки заведомо легко подбираемых паролей.

- Установка максимального срока действия пароля. Срок действия пароля ограничивает промежуток времени, который злоумышленник может затратить на подбор пароля. Тем самым, сокращение срока действия пароля уменьшает вероятность его успешного подбора.

- Установка минимального срока действия пароля. Данный механизм предотвращает попытки пользователя незамедлительно сменить новый пароль на предыдущий.

- Отбраковка по журналу истории паролей. Механизм предотвращает повторное использование паролей - возможно, ранее скомпрометированных.

- Ограничение числа попыток ввода пароля. Соответствующий механизм затрудняет интерактивный подбор паролей.

- Принудительная смена пароля при первом входе пользователя в систему. В случае, если первичную генерацию паролей для всех пользователь осуществляет администратор, пользователю может быть предложено сменить первоначальный пароль при первом же входе в систему - в этом случае новый пароль не будет известен администратору.

- Задержка при вводе неправильного пароля. Механизм препятствует интерактивному подбору паролей.

- Запрет на выбор пароля пользователем и автоматическая генерация пароля. Данный механизм позволяет гарантировать стойкость сгенерированных паролей - однако не стоит забывать, что в этом случае у пользователей неминуемо возникнут проблемы с запоминанием паролей.

Оценка стойкости парольных систем Цирлов В.Л. Основы информационной безопасности автоматизированных систем - «Феникс», 2008 - С. 16

Оценим элементарные взаимосвязи между основными параметрами парольных систем. Введём следующие обозначения:

- A - мощность алфавита паролей;

- L - длина пароля;

- S=AL - мощность пространства паролей;

- V - скорость подбора паролей;

- T - срок действия пароля;

- P - вероятность подбора пароля в течение его срока действия.

Очевидно, что справедливо следующее соотношение:

Обычно скорость подбора паролей V и срок действия пароля T можно считать известными. В этом случае, задав допустимое значение вероятности P подбора пароля в течение его срока действия, можно определить требуемую мощность пространства паролей S.

Заметим, что уменьшение скорости подбора паролей V уменьшает вероятность подбора пароля. Из этого, в частности, следует, что если подбор паролей осуществляется путём вычисления хэш-функции и сравнение результата с заданным значением, то большую стойкость парольной системы обеспечит применение медленной хэш-функции.

Методы хранения паролей

В общем случае возможны три механизма хранения паролей в АС:

1. В открытом виде. Безусловно, данный вариант не является оптимальным, поскольку автоматически создаёт множество каналов утечки парольной информации. Реальная необходимость хранения паролей в открытом виде встречается крайне редко, и обычно подобное решение является следствием некомпетентности разработчика.

2. В виде хэш-значения. Данный механизм удобен для проверки паролей, поскольку хэш-значения однозначно связаны с паролем, но при этом сами не представляют интереса для злоумышленника.

3. В зашифрованном виде. Пароли могут быть зашифрованы с использованием некоторого криптографического алгоритма, при этом ключ шифрования может храниться:

- на одном из постоянных элементов системы;

- на некотором носителе (электронный ключ, смарт-карта и т.п.), предъявляемом при инициализации системы;

- ключ может генерироваться из некоторых других параметров безопасности АС - например, из пароля администратора при инициализации системы.

Передача паролей по сети

Наиболее распространены следующие варианты реализации:

1. Передача паролей в открытом виде. Подход крайне уязвим, поскольку пароли могут быть перехвачены в каналах связи. Несмотря на это, множество используемых на практике сетевых протоколов (например, FTP) предполагают передачу паролей в открытом виде.

2. Передача паролей в виде хэш-значений иногда встречается на практике, однако обычно не имеет смысла - хэши паролей могут быть перехвачены и повторно переданы злоумышленником по каналу связи.

3. Передача паролей в зашифрованном виде в большинстве является наиболее разумным и оправданным вариантом.

1.3.4 Разграничение доступа

Под разграничением доступа принято понимать установление полномочий субъектов для полследующего контроля санкционированного использования ресурсов, доступных в системе. Принято выделять два основных метода разграничения доступа: дискреционное и мандатное.

Дискреционным называется разграничение доступа между поименованными субъектами и поименованными объектами.

Очевидно, что вместо матрицы доступа можно использовать списки полномочий: например, каждому пользователю может быть сопоставлен список доступных ему ресурсов с соответствующими правами, или же каждому ресурсу может быть сопоставлен список пользователей с указанием их прав на доступ к данному ресурсу.

Мандатное разграничение доступа обычно реализуется как разграничение доступа по уровням секретности. Полномочия каждого пользователя задаются в соответствии с максимальным уровнем секретности, к которому он допущен. При этом все ресурсы АС должны быть классифицированы по уровням секретности.

Принципиальное различие между дискреционным и мандатным разграничением доступа состоит в следующем: если в случае дискреционного разграничения доступа права на доступ к ресурсу для пользователей определяет его владелец, то в случае мандатного разграничения доступа уровни секретности задаются извне, и владелец ресурса не может оказать на них влияния. Сам термин «мандатное» является неудачным переводом слова mandatory - «обязательный». Тем самым, мандатное разграничение доступа следует понимать как принудительное.

1.3.5 Криптографические методы обеспечения конфиденциальности информации

В целях обеспечения конфиденциальности информации используются следующие криптографические примитивы:

1. Симметричные криптосистемы.

В симметричных криптосистемах для зашифрования и расшифрования информации используется один и тот же общий секретный ключ, которым взаимодействующие стороны предварительно обмениваются по некоторому защищённому каналу.

В качестве примеров симметричных криптосистем можно привести отечественный алгоритм ГОСТ 28147-89, а также международные стандарты DES и пришедший ему на смену AES.

2. Асимметричные криптосистемы.

Асимметричные криптосистемы характерны тем, что в них используются различные ключи для зашифрования и расшифрования информации. Ключ для зашифрования (открытый ключ) можно сделать общедоступным, с тем чтобы любой желающий мог зашифровать сообщение для некоторого получателя.

Получатель же, являясь единственным обладателем ключа для расшифрования (секретный ключ), будет единственным, кто сможет расшифровать зашифрованные для него сообщения.

Примеры асимметричных криптосистем - RSA и схема Эль-Гамаля.

Симметричные и асимметричные криптосистемы, а также различные их комбинации используются в АС прежде всего для шифрования данных на различных носителях и для шифрования трафика.

защита информация сеть угроза

1.3.6 Методы защиты внешнего периметра

Подсистема защиты внешнего периметра автоматизированной системы обычно включает в себя два основных механизма: средства межсетевого экранирования и средства обнаружения вторжений. Решая родственные задачи, эти механизмы часто реализуются в рамках одного продукта и функционируют в качестве единого целого. В то же время каждый из механизмов является самодостаточным и заслуживает отдельного рассмотрения.

Межсетевое экранирование http://www.infotecs.ru

Межсетевой экран (МЭ) выполняет функции разграничения информационных потоков на границе защищаемой автоматизированной системы. Это позволяет:

- повысить безопасность объектов внутренней среды за счёт игнорирования неавторизованных запросов из внешней среды;

- контролировать информационные потоки во внешнюю среду;

- обеспечить регистрацию процессов информационного обмена.

Контроль информационных потоков производится посредством фильтрации информации, т.е. анализа её по совокупности критериев и принятия решения о распространении в АС или из АС.

В зависимости от принципов функционирования, выделяют несколько классов межсетевых экранов. Основным классификационным признаком является уровень модели ISO/OSI, на котором функционирует МЭ.

1. Фильтры пакетов.

Простейший класс межсетевых экранов, работающих на сетевом и транспортном уровнях модели ISO/OSI. Фильтрация пакетов обычно осуществляется по следующим критериям:

- IP-адрес источника;

- IP-адрес получателя;

- порт источника;

- порт получателя;

- специфические параметры заголовков сетевых пакетов.

Фильтрация реализуется путём сравнения перечисленных параметров заголовков сетевых пакетов с базой правил фильтрации.

2. Шлюзы сеансового уровня

Данные межсетевые экраны работают на сеансовом уровне модели ISO/OSI. В отличие от фильтров пакетов, они могут контролировать допустимость сеанса связи, анализируя параметры протоколов сеансового уровня.

3. Шлюзы прикладного уровня

Межсетевые экраны данного класса позволяют фильтровать отдельные виды команд или наборы данных в протоколах прикладного уровня. Для этого используются прокси-сервисы - программы специального назначения, управляющие трафиком через межсетевой экран для определённых высокоуровневых протоколов (http, ftp, telnet и т.д.).

Порядок использования прокси-сервисов показан в Приложении Г.

Если без использование прокси-сервисов сетевое соединение устанавливается между взаимодействующими сторонами A и B напрямую, то в случае использования прокси-сервиса появляется посредник - прокси-сервер, который самостоятельно взаимодействует со вторым участником информационного обмена. Такая схема позволяет контролировать допустимость использования отдельных команд протоколов высокого уровня, а также фильтровать данные, получаемые прокси-сервером извне; при этом прокси-сервер на основании установленных политик может принимать решение о возможности или невозможности передачи этих данных клиенту A.

4. Межсетевые экраны экспертного уровня.

Наиболее сложные межсетевые экраны, сочетающие в себе элементы всех трёх приведённых выше категорий. Вместо прокси-сервисов в таких экранах используются алгоритмы распознавания и обработки данных на уровне приложений.

Большинство используемых в настоящее время межсетевых экранов относятся к категории экспертных. Наиболее известные и распространённые МЭ - CISCO PIX и CheckPoint FireWall-1.

Системы обнаружения вторжений

Обнаружение вторжений представляет собой процесс выявления несанкционированного доступа (или попыток несанкционированного доступа) к ресурсам автоматизированной системы. Система обнаружения вторжений (Intrusion Detection System, IDS) в общем случае представляет собой программно-аппаратный комплекс, решающий данную задачу.

Существуют две основных категории систем IDS:

1. IDS уровня сети.

В таких системах сенсор функционирует на выделенном для этих целей хосте в защищаемом сегменте сети. Обычно сетевой адаптер данного хоста функционирует в режиме прослушивания (promiscuous mode), что позволяет анализировать весь проходящий в сегменте сетевой трафик.

2. IDS уровня хоста.

В случае, если сенсор функционирует на уровне хоста, для анализа может быть использована следующая информация:

- записи стандартных средств протоколирования операционной системы;

- информация об используемых ресурсах;

- профили ожидаемого поведения пользователей.

Каждый из типов IDS имеет свои достоинства и недостатки. IDS уровня сети не снижают общую производительность системы, однако IDS уровня хоста более эффективно выявляют атаки и позволяют анализировать активность, связанную с отдельным хостом. На практике целесообразно использовать системы, совмещающие оба описанных подхода.

Существуют разработки, направленные на использование в системах IDS методов искусственного интеллекта. Стоит отметить, что в настоящее время коммерческие продукты не содержат таких механизмов.

1.3.7 Протоколирование и аудит active audit .narod.ru

Подсистема протоколирования и аудита является обязательным компонентом любой АС. Протоколирование, или регистрация, представляет собой механизм подотчётности системы обеспечения информационной безопасности, фиксирующий все события, относящиеся к вопросам безопасности. В свою очередь, аудит - это анализ протоколируемой информации с целью оперативного выявления и предотвращения нарушений режима информационной безопасности. Системы обнаружения вторжений уровня хоста можно рассматривать как системы активного аудита.

Назначение механизма регистрации и аудита:

- обеспечение подотчётности пользователей и администраторов;

- обеспечение возможности реконструкции последовательности событий (что бывает необходимо, например, при расследовании инцидентов, связанных с информационной безопасностью);

- обнаружение попыток нарушения информационной безопасности;

- предоставление информации для выявления и анализа технических проблем, не связанных с безопасностью.

Протоколируемые данные помещаются в регистрационный журнал, который представляет собой хронологически упорядоченную совокупность записей результатов деятельности субъектов АС, достаточную для восстановления, просмотра и анализа последовательности действий с целью контроля конечного результата.

Поскольку системные журналы являются основным источником информации для последующего аудита и выявления нарушений безопасности, вопросу защиты системных журналов от несанкционированной модификации должно уделяться самое пристальное внимание. Система протоколирования должна быть спроектирована таким образом, чтобы ни один пользователь (включая администраторов!) не мог произвольным образом модифицировать записи системных журналов.

Не менее важен вопрос о порядке хранения системных журналов. Поскольку файлы журналов хранятся на том или ином носителе, неизбежно возникает проблема переполнения максимально допустимого объёма системного журнала. При этом реакция системы может быть различной, например:

- система может быть заблокирована вплоть до решения проблемы с доступным дисковым пространством;

- могут быть автоматически удалены самые старые записи системных журналов;

- система может продолжить функционирование, временно приостановив протоколирование информации.

Безусловно, последний вариант в большинстве случаев является неприемлемым, и порядок хранения системных журналов должен быть чётко регламентирован в политике безопасности организации.

1.4 Построение систем защиты от угроз нарушения целостности

1.4.1 Принципы обеспечения целостности

Большинство механизмов, реализующих защиту информации от угроз нарушения конфиденциальности, в той или иной степени способствуют обеспечению целостности информации. В данном разделе мы остановимся более подробно на механизмах, специфичных для подсистемы обеспечения целостности. Сформулируем для начала основные принципы обеспечения целостности, сформулированные Кларком и Вилсоном:

1. Корректность транзакций.

Принцип требует обеспечения невозможности произвольной модификации данных пользователем. Данные должны модифицироваться исключительно таким образом, чтобы обеспечивалось сохранение их целостности.

2. Аутентификация пользователей.

Изменение данных может осуществляться только аутентифицированными для выполнения соответствующих действий пользователями.

3. Минимизация привилегий.

Процессы должны быть наделены теми и только теми привилегиями в АС, которые минимально достаточны для их выполнения.

4. Разделение обязанностей.

Для выполнения критических или необратимых операций требуется участие нескольких независимых пользователей.

На практике разделение обязанностей может быть реализовано либо исключительно организационными методами, либо с использованием криптографических схем разделения секрета.

5. Аудит произошедших событий.

Данный принцип требует создания механизма подотчётности пользователей, позволяющего отследить моменты нарушения целостности информации.

6. Объективный контроль.

Необходимо реализовать оперативное выделение данных, контроль целостности которых является оправданным.

Действительно, в большинстве случаев строго контролировать целостность всех данных, присутствующих в системе, нецелесообразно хотя бы из соображений производительности: контроль целостности является крайне ресурсоёмкой операцией.

7. Управление передачей привилегий.

Порядок передачи привилегий должен полностью соответствовать организационной структуре предприятия.

Перечисленные принципы позволяют сформировать общую структуру системы защиты от угроз нарушения целостности (Приложение Д).

Как видно из Приложения Д, принципиально новыми по сравнению с сервисами, применявшимися для построения системы защиты от угроз нарушения конфиденциальности, являются криптографические механизмы обеспечения целостности.

Отметим, что механизмы обеспечения корректности транзакций также могут включать в семя криптографические примитивы.

1.4.2 Криптографические методы обеспечения целостности информации

При построении систем защиты от угроз нарушения целостности информации используются следующие криптографические примитивы:

- цифровые подписи;

- криптографические хэш-функции;

- коды проверки подлинности.

Цифровые подписи

Цифровая подпись представляет собой механизм подтверждения подлинности и целостности цифровых документов. Во многом она является аналогом рукописной подписи - в частности, к ней предъявляются практически аналогичные требования:

1. Цифровая подпись должна позволять доказать, что именно законный автор, и никто другой, сознательно подписал документ.

2. Цифровая подпись должна представлять собой неотъемлемую часть документа.

Должно быть невозможно отделить подпись от документа и использовать её для подписвания других документов.

3. Цифровая подпись должна обеспечивать невозможность изменения подписанного документа (в том числе и для самого автора!).

4. Факт подписывания документа должен быть юридически доказуемым. Должен быть невозможным отказ от авторства подписанного документа.

В простейшем случае для реализации цифровой подписи может быть использован механизм, аналогичный асимметричной криптосистеме. Разница будет состоять в том, что для зашифрования (являющегося в данном случае подписыванием) будет использован секретный ключ, а для расшиврования, играющего роль проверки подписи, - общеизвестный открытый ключ.

Порядок использования цифровой подписи в данном случае будет следующим:

1. Документ зашифровывается секретным ключом подписывающего, и зашифрованная копия распространяется вместе с оригиналом документа в качестве цифровой подписи.

2. Получатель, используя общедоступный открытый ключ подписывающего, расшифровывает подпись, сличает её с оригиналом и убеждается, что подпись верна.

Нетрудно убедиться, что данная реализация цифровой подписи полностью удовлетворяет всем приведённым выше требованиям, но в то же время имеет принципиальный недостаток: объём передаваемого сообщения возрастает как минимум в два раза. Избавиться от этого недостатка позволяет использование хэш-функций.

Криптографические хэш-функции

Функция вида y=f(x) называется криптографической хэш-функцией, если она удовлетворяет следующим свойствам:

1. На вход хэш-функции может поступать последовательность данных произвольной длины, результат же (называемый хэш, или дайджест) имеет фиксированную длину.

2. Значение y по имеющемуся значению x вычисляется за полиномиальное время, а значение x по имеющемуся значению y почти во всех случаях вычислить невозможно.

3. Вычислительно невозможно найти два входных значения хэш-функции, дающие идентичные хэши.

4. При вычислении хэша используется вся информация входной последовательности.

5. Описание функции является открытым и общедоступным.

Покажем, как хэш-функции могут быть использованы в схемах цифровой подписи. Если подписывать не само сообщение, а его хэш, то можно значительно сократить объём передаваемых данных.

Подписав вместо исходного сообщения его хэш, мы передаём результат вместе с исходным сообщением. Получатель расшифровывает подпись и сравнивает полученный результат с хэшем сообщения. В случае совпадения делается вывод о том, что подпись верна.

2 . Программные средства защиты информации в КС

Под программными средствами защиты информации понимают специальные программы, включаемые в состав программного обеспечения КС исключительно для выполнения защитных функций.

К основным программным средствам защиты информации относятся:

* программы идентификации и аутентификации пользователей КС;

* программы разграничения доступа пользователей к ресурсам КС;

* программы шифрования информации;

* программы защиты информационных ресурсов (системного и прикладного программного обеспечения, баз данных, компьютерных средств обучения и т. п.) от несанкционированного изменения, использования и копирования.

Надо понимать, что под идентификацией, применительно к обеспечению информационной безопасности КС, понимают однозначное распознавание уникального имени субъекта КС. Аутентификация означает подтверждение того, что предъявленное имя соответствует данному субъекту (подтверждение подлинности субъекта) 8 Биячуев Т.А. Безопасность корпоративных сетей. Учебное пособие / под ред. Л.Г.Осовецкого - СПб.: СПбГУ ИТМО, 2004, с 64. .

Также к программным средствам защиты информации относятся:

* программы уничтожения остаточной информации (в блоках оперативной памяти, временных файлах и т. п.);

* программы аудита (ведения регистрационных журналов) событий, связанных с безопасностью КС, для обеспечения возможности восстановления и доказательства факта происшествия этих событий;

* программы имитации работы с нарушителем (отвлечения его на получение якобы конфиденциальной информации);

* программы тестового контроля защищенности КС и др.

К преимуществам программных средств защиты информации относятся:

* простота тиражирования;

* гибкость (возможность настройки на различные условия применения, учитывающие специфику угроз информационной безопасности конкретных КС);

* простота применения -- одни программные средства, например шифрования, работают в «прозрачном» (незаметном для пользователя) режиме, а другие не требуют от пользователя ни каких новых (по сравнению с другими программами) навыков;

* практически неограниченные возможности их развития путем внесения изменений для учета новых угроз безопасности информации.

К недостаткам программных средств защиты информации относятся:

* снижение эффективности КС за счет потребления ее ресурсов, требуемых для функционирование программ защиты;

* более низкая производительность (по сравнению с выполняющими аналогичные функции аппаратными средствами защиты, например шифрования);

* пристыкованность многих программных средств защиты (а не их встроенность в программное обеспечение КС, рис. 4 и 5), что создает для нарушителя принципиальную возможность их обхода;

* возможность злоумышленного изменения программных средств защиты в процессе эксплуатации КС.

2 .1 Безопасность на уровне операционной системы

Операционная система является важнейшим программным компонентом любой вычислительной машины, поэтому от уровня реализации политики безопасности в каждой конкретной ОС во многом зависит и общая безопасность информационной системы.

Операционная система MS-DOS является ОС реального режима микропроцессора Intel, а потому здесь не может идти речи о разделении оперативной памяти между процессами. Все резидентные программы и основная программа используют общее пространство ОЗУ. Защита файлов отсутствует, о сетевой безопасности трудно сказать что-либо определенное, поскольку на том этапе развития ПО драйверы для сетевого взаимодействия разрабатывались не фирмой MicroSoft, а сторонними разработчиками.

Семейство операционных систем Windows 95, 98, Millenium - это клоны, изначально ориентированные на работу в домашних ЭВМ. Эти операционные системы используют уровни привилегий защищенного режима, но не делают никаких дополнительных проверок и не поддерживают системы дескрипторов безопасности. В результате этого любое приложение может получить доступ ко всему объему доступной оперативной памяти как с правами чтения, так и с правами записи. Меры сетевой безопасности присутствуют, однако, их реализация не на высоте. Более того, в версии Windows 95 была допущена основательная ошибка, позволяющая удаленно буквально за несколько пакетов приводить к "зависанию" ЭВМ, что также значительно подорвало репутацию ОС, в последующих версиях было сделано много шагов по улучшению сетевой безопасности этого клона Зима В., Молдовян А., Молдовян Н. Безопасность глобальных сетевых технологий. Серия "Мастер". - СПб.: БХВ-Петербург, 2001, с. 124. .

Поколение операционных систем Windows NT, 2000 уже значительно более надежная разработка компании MicroSoft. Они являются действительно многопользовательскими системами, надежно защищающими файлы различных пользователей на жестком диске (правда, шифрование данных все же не производится и файлы можно без проблем прочитать, загрузившись с диска другой операционной системы - например, MS-DOS). Данные ОС активно используют возможности защищенного режима процессоров Intel, и могут надежно защитить данные и код процесса от других программ, если только он сам не захочет предоставлять к ним дополнительного доступа извне процесса.

За долгое время разработки было учтено множество различных сетевых атак и ошибок в системе безопасности. Исправления к ним выходили в виде блоков обновлений (англ. service pack).

Подобные документы

    Изучение основных методов защиты от угроз конфиденциальности, целостности и доступности информации. Шифрование файлов являющихся конфиденциальной собственностью. Использование цифровой подписи, хеширование документов. Защита от сетевых атак в интернете.

    курсовая работа , добавлен 13.12.2015

    Классификация информации по значимости. Категории конфиденциальности и целостности защищаемой информации. Понятие информационной безопасности, источники информационных угроз. Направления защиты информации. Программные криптографические методы защиты.

    курсовая работа , добавлен 21.04.2015

    Понятие защиты умышленных угроз целостности информации в компьютерных сетях. Характеристика угроз безопасности информации: компрометация, нарушение обслуживания. Характеристика ООО НПО "Мехинструмент", основные способы и методы защиты информации.

    дипломная работа , добавлен 16.06.2012

    Проблемы защиты информации в информационных и телекоммуникационных сетях. Изучение угроз информации и способов их воздействия на объекты защиты информации. Концепции информационной безопасности предприятия. Криптографические методы защиты информации.

    дипломная работа , добавлен 08.03.2013

    Необходимость защиты информации. Виды угроз безопасности ИС. Основные направления аппаратной защиты, используемые в автоматизированных информационных технологиях. Криптографические преобразования: шифрование и кодирование. Прямые каналы утечки данных.

    курсовая работа , добавлен 22.05.2015

    Понятие информационной безопасности, понятие и классификация, виды угроз. Характеристика средств и методов защиты информации от случайных угроз, от угроз несанкционированного вмешательства. Криптографические методы защиты информации и межсетевые экраны.

    курсовая работа , добавлен 30.10.2009

    Виды умышленных угроз безопасности информации. Методы и средства защиты информации. Методы и средства обеспечения безопасности информации. Криптографические методы защиты информации. Комплексные средства защиты.

    реферат , добавлен 17.01.2004

    Развитие новых информационных технологий и всеобщая компьютеризация. Информационная безопасность. Классификация умышленных угроз безопасности информации. Методы и средства защиты информации. Криптографические методы защиты информации.

    курсовая работа , добавлен 17.03.2004

    Концепция обеспечения безопасности информации в ООО "Нейрософт"; разработка системы комплексной защиты. Информационные объекты фирмы, степень их конфиденциальности, достоверности, целостности; определение источников угроз и рисков, выбор средств защиты.

    курсовая работа , добавлен 23.05.2013

    Основные виды угроз безопасности экономических информационных систем. Воздействие вредоносных программ. Шифрование как основной метод защиты информации. Правовые основы обеспечения информационной безопасности. Сущность криптографических методов.

Програмные средства - это объективные формы представления совокупности данных и команд, предназначенных для функционирования компьютеров и компьютерных устройств с целью получения определенного результата, а также подготовленные и зафиксированные на физическом носителе материалы, полученные в ходе их разработок, и порождаемые ими аудиовизуальные отображения. К ним относятся:

Программное обеспечение (совокупность управляющих и обрабатывающих программ). Состав:

Системные программы (операционные системы, программы технического обслуживания);

Прикладные программы (программы, которые предназначены для решения задач определенного типа, например редакторы текстов, антивирусные программы, СУБД и т.п.);

Инструментальные программы (системы программирования, состоящие из языков программирования: Turbo C, Microsoft Basic и т.д. и трансляторов – комплекса программ, обеспечивающих автоматический перевод с алгоритмических и символических языков в машинные коды);

Машинная информация владельца, собственника, пользователя.

Подобную детализацию я провожу, чтобы потом более четко понять суть рассматриваемого вопроса, чтобы более четко выделить способы совершения компьютерных преступлений, предметов и орудий преступного посягательства, а также для устранения разногласий по поводу терминологии средств компьютерной техники. После детального рассмотрения основных компонентов, представляющих в совокупности содержание понятия компьютерного преступления, можно перейти к рассмотрению вопросов, касающихся основных элементов криминалистической характеристики компьютерных преступлений.

К программным средствам защиты относятся специальные программы, которые предназначены для выполнения функций защиты и включаются в состав программного обеспечения систем обработки данных. Программная защита является наиболее распространенным видом защиты, чему способствуют такие положительные свойства данного средства, как универсальность, гибкость, простота реализации, практически неограниченные возможности изменения и развития и т.п. По функциональному назначению их можно разделить на следующие группы:

Идентификация технических средств (терминалов, устройств группового управления вводом-выводом, ЭВМ, носителей информации), задач и пользователей;

Определение прав технических средств (дни и время работы, разрешенные к использованию задачи) и пользователей;

Контроль работы технических средств и пользователей;

Регистрация работы технических средств и пользователей при обработки информации ограниченного использования;

Уничтожения информации в ЗУ после использования;

Сигнализации при несанкционированных действиях;

Вспомогательные программы различного назначения: контроля работы механизма защиты, проставления грифа секретности на выдаваемых документах.

Антивирусная защита

Безопасность информации - один из важнейших параметров любой компьютерной системы. Для ее обеспечения создано большое количество программных и аппаратных средств. Часть из них занимается шифрованием информации, часть - разграничением доступа к данным. Особую проблему представляют собой компьютерные вирусы. Это отдельный класс программ, направленных на нарушение работы системы и порчу данных. Среди вирусов выделяют ряд разновидностей. Некоторые из них постоянно находятся в памяти компьютера, некоторые производят деструктивные действия разовыми "ударами". Существует так же целый класс программ, внешне вполне благопристойных, но на самом деле портящих систему. Такие программы называют "троянскими конями". Одним из основных свойств компьютерных вирусов является способность к "размножению" - т.е. самораспространению внутри компьютера и компьютерной сети.

С тех пор, как различные офисные прикладные программные средства получили возможность работать со специально для них написанными программами (например, для Microsoft Office можно писать приложения на языке Visual Basic) появилась новая разновидность вредоносных программ - т.н. МакроВирусы. Вирусы этого типа распространяются вместе с обычными файлами документов, и содержатся внутри них в качестве обычных подпрограмм.

Не так давно (этой весной) прокатилась эпидемия вируса Win95.CIH и его многочисленных подвидов. Этот вирус разрушал содержимое BIOS компьютера, делая невозможной ее работу. Часто приходилось даже выбрасывать испорченные этим вирусом материнские платы.

С учетом мощного развития средств коммуникации и резко возросших объемов обмена данными проблема защиты от вирусов становится очень актуальной. Практически, с каждым полученным, например, по электронной почте документом может быть получен макровирус, а каждая запущенная программа может (теоретически) заразить компьютер и сделать систему неработоспособной.

Поэтому среди систем безопасности важнейшим направлением является борьба с вирусами. Существует целый ряд средств, специально предназначенных для решения этой задачи. Некоторые из них запускаются в режиме сканирования и просматривают содержимое жестких дисков и оперативной памяти компьютера на предмет наличия вирусов. Некоторые же должны быть постоянно запущены и находиться в памяти компьютера. При этом они стараются следить за всеми выполняющимися задачами.

На российском рынке программного обеспечения наибольшую популярность завоевал пакет AVP, разработанный лабораторией антивирусных систем Касперского. Это универсальный продукт, имеющий версии под самые различные операционные системы.

Антивирус Касперского (AVP) использует все современные типы антивирусной защиты: антивирусные сканнеры, мониторы, поведенческие блокираторы и ревизоры изменений. Различные версии продукта поддерживают все популярные операционные системы, почтовые шлюзы, межсетевые экраны (firewalls), web-серверы. Система позволяет контролировать все возможные пути проникновения вирусов на компьютер пользователя, включая Интернет, электронную почту и мобильные носители информации. Средства управления Антивируса Касперского позволяют автоматизировать важнейшие операции по централизованной установке и управлению, как и на локальном компьютере, так и в случае комплексной защиты сети предприятия. Лаборатория Касперского предлагает три готовых решения антивирусной защиты, расчитанные на основные категории пользователей. Во-первых, антивирусная защита для домашних пользователей (одна лицензия для одного компьютера). Во-вторых, антивирусная защита для малого бизнеса (до 50 рабочих станций в сети). В третьих, антивирусная защита для корпоративных пользователей (свыше 50 рабочих станций в сети).Безвозвратно прошли времена, когда для полной уверенности в сохранности от "заразы" было достаточно не пользоваться "случайными" дискетами и раз-другой в неделю запускать на машине утилиту Aidstest R, проверяющую жесткий диск компьютера на наличие подозрительных объектов. Во-первых, расширился спектр областей, в которых эти объекты могут оказаться. Электронная почта с присоединенными "вредными" файлами, макровирусы в офисных (в основном речь идет о Microsoft Office) документах, "троянские кони" - все это появилось сравнительно недавно. Во-вторых, перестал оправдывать себя подход периодических ревизий жесткого диска и архивов - такие проверки приходилось бы проводить слишком часто, и они отнимали бы слишком много ресурсов системы.

На смену устаревшим системам защиты пришло новое поколение, способное отследить и нейтрализовать "угрозу" на всех ответственных участках - от электронной почты до копирования файлов между дисками. При этом современные антивирусы организовывают постоянную защиту - это означает, что они постоянно находятся в памяти и анализируют обрабатываемую информацию.

Одним из наиболее известных и повсеместно применяемых пакетов антивирусной защиты является AVP от Лаборатории Касперского. Этот пакет существует в большом количестве различных вариантов. Каждый из них предназначен для решения определенного круга задач обеспечения безопасности, и обладает рядом специфических свойств.

Системы защиты, распространяемые Лабораторией Касперского, разделяются на три основных категории, в зависимости от видов решаемых ими задач. Это защита для малого бизнеса, защита для домашних пользователей и защита для корпоративных клиентов.

В AntiViral Toolkit Pro входят программы, позволяющие защищать рабочие станции, управляемые различными ОС - сканеры AVP для DOS, Windows 95/98/NT, Linux, мониторы AVP для Windows 95/98/NT, Linux, файловые сервера - монитор и сканер AVP для Novell Netware, монитор и сканер для NT сервера, WEB-сервера - ревизор диска AVP Inspector для Windows, почтовые сервера Microsoft Exchange - AVP для Microsoft Exchange и шлюзы.

AntiViral Toolkit Pro включает в себя программы-сканеры и программы-мониторы. Мониторы позволяют организовать более полный контроль, необходимый на самых ответственных участках сети.

В сетях Windows 95/98/NT AntiViral Toolkit Pro позволяет проводить с помощью программного комплекса AVP Сетевой Центр Управления централизованное администрирование всей логической сети с рабочего места ее администратора.

Концепция AVP позволяет легко и регулярно обновлять антивирусные программы, путем замены антивирусных баз - набора файлов с расширением.AVC, которые на сегодняшний день позволяют обнаруживать и удалять более 50000 вирусов. Обновления к антивирусным базам выходят и доступны с сервера Лаборатории Касперского ежедневно. На данный момент пакет антивирусных программ AntiViral Toolkit Pro (AVP) имеет одну из самых больших в мире антивирусных баз.


Похожая информация.


В современных информационных системах (ИС) информация обладает двумя противоречивыми свойствами – доступностью и защищенностью от несанкционированного доступа. Во многих случаях разработчики ИС сталкиваются с проблемой выбора приоритета одного из этих свойств.

Под защитой информации обычно понимается именно обеспечение ее защищенности от несанкционированного доступа. При этом под самим несанкционированным доступом принято понимать действия, которые повлекли "…уничтожение, блокирование, модификацию, либо копирование информации…"(УК РФ ст.272). Все методы и средства защиты информации можно условно разбить на две большие группы: формальные и неформальные.

Рис. 1. Классификация методов и средств защиты информации

Формальные методы и средства

Это такие средства, которые выполняют свои защитные функции строго формально, то есть по заранее предусмотренной процедуре и без непосредственного участия человека.

Технические средства

Техническими средствами защиты называются различные электронные и электронно-механические устройства, которые включаются в состав технических средств ИС и выполняют самостоятельно или в комплексе с другими средствами некоторые функции защиты.

Физические средства

Физическими средствами защиты называются физические и электронные устройства, элементы конструкций зданий, средства пожаротушения, и целый ряд других средств. Они обеспечивают выполнение следующих задач:

  • защиту территории и помещений вычислительного центра от проникновения злоумышленников;
  • защиту аппаратуры и носителей информации от повреждения или хищения;
  • предотвращение возможности наблюдения за работой персонала и функционированием оборудования из-за пределов территории или через окна;
  • предотвращение возможности перехвата электромагнитных излучений работающего оборудования и линий передачи данных;
  • контроль за режимом работы персонала;
  • организацию доступа в помещение сотрудников;
  • контроль за перемещением персонала в различных рабочих зонах и т.д.

Криптографические методы и средства

Криптографическими методами и средствами называются специальные преобразования информации, в результате которых изменяется ее представление.

В соответствии с выполняемыми функциями криптографические методы и средства можно разделить на следующие группы:

  • идентификация и аутентификация;
  • разграничение доступа;
  • шифрования защищаемых данных;
  • защита программ от несанкционированного использования;
  • контроль целостности информации и т.д.

Неформальные методы и средства защиты информации

Неформальные средства – такие, которые реализуются в результате целенаправленной деятельности людей, либо регламентируют (непосредственно или косвенно) эту деятельность.

К неформальным средствам относятся:

Организационные средства

Это организационно-технические и организационно-правовые мероприятия, осуществляемые в процессе создания и эксплуатации ИС с целью обеспечения защиты информации. По своему содержанию все множество организационных мероприятий условно можно разделить на следующие группы:

  • мероприятия, осуществляемые при создании ИС;
  • мероприятия, осуществляемые в процессе эксплуатации ИС: организация пропускного режима, организация технологии автоматизированной обработки информации, организация работы в сменах, распределение реквизитов разграничения доступа(паролей, профилей, полномочий и т.п.) ;
  • мероприятия общего характера: учет требований защиты при подборе и подготовке кадров, организация плановых и превентивных проверок механизма защиты, планирование мероприятий по защите информации и т.п.

Законодательные средства

Это законодательные акты страны, которыми регламентируются правила использования и обработки информации ограниченного использования и устанавливаются меры ответственности за нарушение этих правил. Можно сформулировать пять ”основных принципов”, которые лежат в основе системы законов о защите информации:

  • не должны создаваться системы, накапливающие большой объем персональной информации, деятельность которых была бы засекречена;
  • должны существовать способы, с помощью которых отдельная личность может установить факт сбора персональной информации, узнать для чего она собирается, и как будет использоваться;
  • должны существовать гарантии того, что информация, полученная для какой-то одной цели, не будет использована для других целей без информирования об этом лица, к которому она относится;
  • должны существовать способы, с помощью которых человек может исправить информацию, относящуюся к нему и содержащуюся в ИС;
  • любая организация, накапливающая, хранящая и использующая персональную информацию должна обеспечивать надежность хранения данных при их соответствующем использовании и должна принимать все меры для предотвращения неправильного использования данных.

Морально – этические нормы

Эти нормы могут быть как не писанными (общепринятые нормы честности, патриотизма и т.п.) так и писанными, т.е. оформленными в некоторый свод правил и предписаний (устав).

С другой стороны, все методы и средства защиты информации можно разделить на две большие группы по типу защищаемого объекта. В первом случае объектом является носитель информации, и здесь используются все неформальные, технические и физические методы и средства защиты информации. Во втором случае речь идет о самой информации, и для ее защиты используются криптографические методы.

Наиболее опасными (значимыми) угрозами безопасности информации являются:

  • нарушение конфиденциальности (разглашение, утечка) сведений, составляющих банковскую, судебную, врачебную и коммерческую тайну, а также персональных данных;
  • нарушение работоспособности (дезорганизация работы) ИС, блокирование информации, нарушение технологических процессов, срыв своевременного решения задач;
  • нарушение целостности (искажение, подмена, уничтожение) информационных, программных и других ресурсов ИС, а также фальсификация (подделка) документов.

Приведем ниже краткую классификацию возможных каналов утечки информации в ИС – способов организации несанкционированного доступа к информации.

Косвенные каналы , позволяющие осуществлять несанкционированный доступ к информации без физического доступа к компонентам ИС:

  • применение подслушивающих устройств;
  • дистанционное наблюдение, видео и фотосъемка;
  • перехват электромагнитных излучений, регистрация перекрестных наводок и т.п.

Каналы, связанные с доступом к элементам ИС, но не требующие изменения компонентов системы, а именно:

  • наблюдение за информацией в процессе обработки с целью ее запоминания;
  • хищение носителей информации;
  • сбор производственных отходов, содержащих обрабатываемую информацию;
  • преднамеренное считывание данных из файлов других пользователей;
  • чтение остаточной информации, т.е. данных, остающихся на полях запоминающих устройств после выполнения запросов;
  • копирование носителей информации;
  • преднамеренное использование для доступа к информации терминалов зарегистрированных пользователей;
  • маскировка под зарегистрированного пользователя путем похищения паролей и других реквизитов разграничения доступа к информации, используемых в ИС;
  • использование для доступа к информации так называемых «лазеек», то есть возможностей обхода механизма разграничения доступа, возникающих вследствие несовершенства и неоднозначностей языков программирования и общесистемных компонентов программного обеспечения в ИС.

Каналы, связанные с доступом к элементам ИС и с изменением структуры ее компонентов :

  • незаконное подключение специальной регистрирующей аппаратуры к устройствам системы или к линиям связи;
  • злоумышленное изменение программ таким образом, чтобы эти программы наряду с основными функциями обработки информации осуществляли также несанкционированный сбор и регистрацию защищаемой информации;
  • злоумышленный вывод из строя механизма защиты.

1.3.3. Ограничение доступа к информации

В общем случае система защиты информации от несанкционированного доступа состоит из трех основных процессов:

  • идентификация;
  • аутентификация;
  • авторизация.

При этом участниками этих процессов принято считать субъекты – активные компоненты (пользователи или программы) и объекты – пассивные компоненты (файлы, базы данных и т.п.).

Задачей систем идентификации, аутентификации и авторизации является определение, верификация и назначение набора полномочий субъекта при доступе к информационной системе.

Идентификацией субъекта при доступе к ИС называется процесс сопоставления его с некоторой, хранимой системой в некотором объекте, характеристикой субъекта – идентификатором. В дальнейшем идентификатор субъекта используется для предоставления субъекту определенного уровня прав и полномочий при пользовании информационной системой.

Аутентификацией субъекта называется процедура верификации принадлежности идентификатора субъекту. Аутентификация производится на основании того или иного секретного элемента (аутентификатора), которым располагают как субъект, так и информационная система. Обычно в некотором объекте в информационной системе, называемом базой учетных записей, хранится не сам секретный элемент, а некоторая информация о нем, на основании которой принимается решение об адекватности субъекта идентификатору.

Авторизацией субъекта называется процедура наделения его правами соответствующими его полномочиям. Авторизация осуществляется лишь после того, как субъект успешно прошел идентификацию и аутентификацию.

Весь процесс идентификации и аутентификации можно схематично представить следующим образом:

Рис. 2. Схема процесса идентификации и аутентификации

2- требование пройти идентификацию и аутентификацию;

3- отсылка идентификатора;

4- проверка наличия полученного идентификатора в базе учетных записей;

6- отсылка аутентификаторов;

7- проверка соответствия полученного аутентификатора указанному ранее идентификатору по базе учетных записей.

Из приведенной схемы (рис.2) видно, что для преодоления системы защиты от несанкционированного доступа можно либо изменить работу субъекта, осуществляющего реализацию процесса идентификации/аутентификации, либо изменить содержимое объекта – базы учетных записей. Кроме того, необходимо различать локальную и удаленную аутентификацию.

При локальной аутентификации можно считать, что процессы 1,2,3,5,6 проходят в защищенной зоне, то есть атакующий не имеет возможности прослушивать или изменять передаваемую информацию. В случае же удаленной аутентификации приходится считаться с тем, что атакующий может принимать как пассивное, так и активное участие в процессе пересылки идентификационной /аутентификационной информации. Соответственно в таких системах используются специальные протоколы, позволяющие субъекту доказать знание конфиденциальной информации не разглашая ее (например, протокол аутентификации без разглашения).

Общую схему защиты информации в ИС можно представить следующим образом (рис.3):

Рис. 3. Съема защиты информации в информационной системе

Таким образом, всю систему защиты информации в ИС можно разбить на три уровня. Даже если злоумышленнику удастся обойти систему защиты от несанкционированного доступа, он столкнется с проблемой поиска необходимой ему информации в ИС.

Семантическая защита предполагает сокрытие места нахождения информации. Для этих целей может быть использован, например, специальный формат записи на носитель или стеганографические методы, то есть сокрытие конфиденциальной информации в файлах-контейнерах не несущих какой-либо значимой информации.

В настоящее время стеганографические методы защиты информации получили широкое распространение в двух наиболее актуальных направлениях:

  • сокрытие информации;
  • защита авторских прав.

Последним препятствием на пути злоумышленника к конфиденциальной информации является ее криптографическое преобразование. Такое преобразование принято называть шифрацией. Краткая классификация систем шифрования приведена ниже (рис.4):

Рис. 4. Классификация систем шифрования

Основными характеристиками любой системы шифрования являются:

  • размер ключа;
  • сложность шифрации/дешифрации информации для легального пользователя;
  • сложность «взлома» зашифрованной информации.

В настоящее время принято считать, что алгоритм шифрации/дешифрации открыт и общеизвестен. Таким образом, неизвестным является только ключ, обладателем которого является легальный пользователь. Во многих случаях именно ключ является самым уязвимым компонентом системы защиты информации от несанкционированного доступа.

Из десяти законов безопасности Microsoft два посвящены паролям:

Закон 5: «Слабый пароль нарушит самую строгую защиту»,

Закон 7: «Шифрованные данные защищены ровно настолько, насколько безопасен ключ дешифрации».

Именно поэтому выбору, хранению и смене ключа в системах защиты информации придают особо важное значение. Ключ может выбираться пользователем самостоятельно или навязываться системой. Кроме того, принято различать три основные формы ключевого материала:

1.3.4. Технические средства защиты информации

В общем случае защита информации техническими средствами обеспечивается в следующих вариантах:
источник и носитель информации локализованы в пределах границ объекта защиты и обеспечена механическая преграда от контакта с ними злоумышленника или дистанционного воздействия на них полей его технических средств

  • соотношение энергии носителя и помех на входе приемника установленного в канале утечки такое, что злоумышленнику не удается снять информацию с носителя с необходимым для ее использования качеством;
  • злоумышленник не может обнаружить источник или носитель информации;
  • вместо истинной информации злоумышленник получает ложную, которую он принимает как истинную.

Эти варианты реализуют следующие методы защиты:

  • воспрепятствование непосредственному проникновению злоумышленника к источнику информации с помощью инженерных конструкций, технических средств охраны;
  • скрытие достоверной информации;
  • "подсовывание" злоумышленнику ложной информации.

Применение инженерных конструкций и охрана - наиболее древний метод защиты людей и материальных ценностей. Основной задачей технических средств защиты является недопущение (предотвращение) непосредственного контакта злоумышленника или сил природы с объектами защиты.

Под объектами защиты понимаются как люди и материальные ценности, так и носители информации, локализованные в пространстве. К таким носителям относятся бумага, машинные носители, фото- и кинопленка, продукция, материалы и т.д., то есть всё, что имеет четкие размеры и вес. Для организации защиты таких объектов обычно используются такие технические средства защиты как охранная и пожарная сигнализация.

Носители информации в виде электромагнитных и акустических полей, электрического тока не имеют четких границ и для защиты такой информации могут быть использованы методы скрытия информации. Эти методы предусматривают такие изменения структуры и энергии носителей, при которых злоумышленник не может непосредственно или с помощью технических средств выделить информацию с качеством, достаточным для использования ее в собственных интересах.

1.3.5. Программные средства защиты информации

Эти средства защиты предназначены специально для защиты компьютерной информации и построены на использовании криптографических методов. Наиболее распространенными программными средствами являются:

  • Программы для криптографической обработки (шифрации/дешифрации) информации («Верба» МО ПНИЭИ www.security.ru ; «Криптон» Анкад www.ancud.ru ; «Secret Net» Информзащита www.infosec.ru ; «Dallas Lock» Конфидент www.confident.ru и другие);
  • Программы для защиты от несанкционированного доступа к информации хранящейся на компьютере («Соболь» Анкад www.ancud.ru и другие);
  • Программы стеганографической обработки информации («Stegano2ET» и другие);
  • Программные средства гарантированного уничтожения информации;
  • Системы защиты от несанкционированного копирования и использования (с использованием электронных ключей, например фирмы Аладдин www.aladdin.ru и с привязкой к уникальным свойствам носителя информации «StarForce»).

1.3.6. Антивирусные средства защиты информации

В общем случае следует говорить о «вредоносных программах», именно так они определяются в руководящих документах ГосТехКомиссии и в имеющихся законодательных актах(например, статья 273 УКРФ «Создание, использование и распространение вредоносных программ для ЭВМ»). Все вредоносные программы можно разделить на пять типов:

  • Вирусы – определяются как куски программного кода, которые обладают возможностью порождать объекты с подобными свойствами. Вирусы в свою очередь классифицируют по среде обитания(например: boot -, macro - и т.п. вирусы) и по деструктивному действию.
  • Логические бомбы – программы, запуск которых происходит лишь при выполнении определенных условий (например: дата, нажатие комбинации клавиш, отсутствие/наличие определенной информации и т.п.).
  • Черви – программы, обладающие возможностью распространяться по сети, передавая в узел назначения не обязательно сразу полностью весь программный код – то есть они могут «собирать» себя из отдельных частей.
  • Трояны – программы, выполняющие не документированные действия.
  • Бактерии – в отличие от вирусов это цельная программы, обладающие свойством воспроизведения себе подобных.

В настоящее время вредоносные программ в «чистом» виде практически не существуют – все они являются некоторым симбиозом перечисленных выше типов. То есть, например: троян может содержать вирус и в свою очередь вирус может обладать свойствами логической бомбы. По статистике ежедневно появляется около 200 новых вредоносных программ, причем «лидерство» принадлежит червям, что вполне естественно, вследствие быстрого роста числа активных пользователей сети Интернет.

В качестве защиты от вредоносных программ рекомендуется использовать пакеты антивирусных программ (например: DrWeb, AVP – отечественные разработки, или зарубежные, такие как NAV, TrendMicro, Panda и т.д.). Основным методом диагностики всех имеющихся антивирусных систем является «сигнатурный анализ», то есть попытка проверить получаемую новую информацию на наличие в ней «сигнатуры» вредоносной программы – характерного куска программного кода. К сожалению, такой подход имеет два существенных недостатка:

  • Можно диагностировать только уже известные вредоносные программы, а это требует постоянного обновления баз «сигнатур». Именно об этом предупреждает один из законов безопасности Microsoft:

Закон 8: «Не обновляемая антивирусная программа не намного лучше полного отсутствия такой программы»

  • Непрерывное увеличение числа новых вирусов приводит к существенному росту размера базы «сигнатур», что в свою очередь вызывает значительное использование антивирусной программой ресурсов компьютера и соответственно замедление его работы.

Одним из известных путей повышения эффективности диагностирования вредоносных программ является использование так называемого «эвристического метода». В этом случае предпринимается попытка обнаружить наличие вредоносных программ, учитывая известные методы их создания. Однако, к сожалению, в случае если в разработке программы принимал участие высококлассный специалист, обнаружить ее удается лишь после проявления ею своих деструктивных свойств.

Версия для печати

Хрестоматия

Название работы Аннотация

Практикумы

Название практикума Аннотация

Презентации

Название презентации Аннотация

Защита данных в компьютерных сетях становится одной из самых острых проблем в современной информатике. На сегодняшний день сформулировано три базовых принципа информационной безопасности, которая должна обеспечивать:

Целостность данных - защиту от сбоев, ведущих к потере информации, а также неавторизованного создания или уничтожения данных;

Конфиденциальность информации и, одновременно,

Следует также отметить, что отдельные сферы деятельности (банковские и финансовые институты, информационные сети, системы государственного управления, оборонные и специальные структуры) требуют специальных мер безопасности данных и предъявляют повышенные требования к надежности функционирования информационных систем.

При рассмотрении проблем защиты данных в сети прежде всего возникает вопрос о классификации сбоев и нарушений прав доступа, которые могут привести к уничтожению или нежелательной модификации данных. Среди таких потенциальных "угроз" можно выделить:

1. Сбои оборудования:

Сбои кабельной системы;

Перебои электропитания;

Сбои дисковых систем;

Сбои систем архивации данных;

Сбои работы серверов, рабочих станций, сетевых карт и т. д.;

2. Потери информации из-за некорректной работы ПО:

Потеря или изменение данных при ошибках ПО;

Потери при заражении системы компьютерными вирусами;

3. Потери, связанные с несанкционированным доступом:

Несанкционированное копирование, уничтожение или подделка информации;

Ознакомление с конфиденциальной информацией, составляющей тайну, посторонних лиц;

4. Потери информации, связанные с неправильным хранением архивных данных.

5. Ошибки обслуживающего персонала и пользователей.

Случайное уничтожение или изменение данных;

Некорректное использование программного и аппаратного обеспечения, ведущее к уничтожению или изменению данных.

В зависимости от возможных видов нарушений работы сети многочисленные виды защиты информации объединяются в три основных класса:

Средства физической защиты, включающие средства защиты кабельной системы, систем электропитания, средства архивации, дисковые массивы и т. д.

Программные средства защиты, в том числе: антивирусные программы, системы разграничения полномочий, программные средства контроля доступа.

Административные меры защиты, включающие контроль доступа в помещения, разработку стратегии безопасности фирмы, планов действий в чрезвычайных ситуациях и т.д.

Следует отметить, что подобное деление достаточно условно, поскольку современные технологии развиваются в направлении сочетания программных и аппаратных средств защиты.

Системы архивирования и дублирования информации

Организация надежной и эффективной системы архивации данных является одной из важнейших задач по обеспечению сохранности информации в сети. В небольших сетях, где установлены один-два сервера, чаще всего применяется установка системы архивации непосредственно в свободные слоты серверов. В крупных корпоративных сетях наиболее предпочтительно организовать выделенный специализированный архивационный сервер.

Такой сервер автоматически производит архивирование информации с жестких дисков серверов и рабочих станций в указанное администратором локальной вычислительной сети время, выдавая отчет о проведенном резервном копировании. При этом обеспечивается управление всем процессом архивации с консоли администратора, например, можно указать конкретные тома, каталоги или отдельные файлы, которые необходимо архивировать.

Возможна также организация автоматического архивирования по наступлении того или иного события ("event driven backup"), например, при получении информации о том, что на жестком диске сервера или рабочей станции осталось мало свободного места, или при выходе из строя одного из "зеркальных" дисков на файловом сервере.

Для обеспечения восстановления данных при сбоях магнитных дисков в последнее время чаще всего применяются системы дисковых массивов - группы дисков, работающих как единое устройство, соответствующих стандарту RAID (Redundant Arrays of Inexpensive Disks).

Защита от компьютерных вирусов

На сегодняшний день дополнительно к тысячам уже известных вирусов появляется 100-150 новых штаммов ежемесячно. Наиболее распространенными методами защиты от вирусов по сей день остаются различные антивирусные программы.

Однако в качестве перспективного подхода к защите от компьютерных вирусов в последние годы все чаще применяется сочетание программных и аппаратных методов защиты. Среди аппаратных устройств такого плана можно отметить специальные антивирусные платы, которые вставляются в стандартные слоты расширения компьютера.

Защита от несанкционированного доступа

Проблема защиты информации от несанкционированного доступа особо обострилась с широким распространением локальных и, особенно, глобальных компьютерных сетей. Необходимо также отметить, что зачастую ущерб наносится не из-за "злого умысла", а из-за элементарных ошибок пользователей, которые случайно портят или удаляют жизненно важные данные. В связи с этим, помимо контроля доступа, необходимым элементом защиты информации в компьютерных сетях является разграничение полномочий пользователей.

В компьютерных сетях при организации контроля доступа и разграничения полномочий пользователей чаще всего используются встроенные средства сетевых операционных систем

Существует достаточно много возможных направлений утечки информации и путей несанкционированного доступа в системах и сетях. В их числе:

чтение остаточной информации в памяти системы после выполнения санкционированных запросов;

· копирование носителей информации и файлов информации с преодолением мер защиты;

· маскировка под зарегистрированного пользователя;

· маскировка под запрос системы;

· использование программных ловушек;

· использование недостатков операционной системы;

· незаконное подключение к аппаратуре и линиям связи;

· злоумышленный вывод из строя механизмов защиты;

· внедрение и использование компьютерных вирусов.

Обеспечение безопасности информации достигается комплексом организационных, организационно-технических, технических и программных мер.

К организационным мерам защиты информации относятся:

· ограничение доступа в помещения, в которых происходит подготовка и обработка информации;

· допуск к обработке и передаче конфиденциальной информации только проверенных должностных лиц;

· хранение магнитных носителей и регистрационных журналов в закрытых для доступа посторонних лиц сейфах;

· исключение просмотра посторонними лицами содержания обрабатываемых материалов через дисплей, принтер и т.д.;

· использование криптографических кодов при передаче по каналам связи ценной информации;

· уничтожение красящих лент, бумаги и иных материалов, содержащих фрагменты ценной информации.

Организационно-технические меры защиты информации включают:

· осуществление питания оборудования, обрабатывающего ценную информацию от независимого источника питания или через специальные сетевые фильтры;

· установку на дверях помещений кодовых замков;

· использование для отображения информации при вводе-выводе жидкокристаллических или плазменных дисплеев, а для получения твёрдых копий - струйных принтеров и термопринтеров, поскольку дисплей даёт такое высокочастотное электромагнитное излучение, что изображение с его экрана можно принимать на расстоянии нескольких сотен километров;

· уничтожение информации, при списании или отправке ЭВМ в ремонт;

· установка клавиатуры и принтеров на мягкие прокладки с целью снижения возможности снятия информации акустическим способом;

· ограничение электромагнитного излучения путём экранирования помещений, где происходит обработка информации, листами из металла или из специальной пластмассы.

Технические средства защиты информации - это системы охраны территорий и помещений с помощью экранирования машинных залов и организации контрольно-пропускных систем. Защита информации в сетях и вычислительных средствах с помощью технических средств реализуется на основе организации доступа к памяти с помощью:

· контроля доступа к различным уровням памяти компьютеров;

· блокировки данных и ввода ключей;

· выделение контрольных битов для записей с целью идентификации и др.

Архитектура программных средств защиты информации включает:

· контроль безопасности, в том числе контроль регистрации вхождения в систему, фиксацию в системном журнале, контроль действий пользователя;

· реакцию (в том числе звуковую) на нарушение системы защиты контроля доступа к ресурсам сети;

· контроль мандатов доступа;

· формальный контроль защищённости операционных систем (базовой общесистемной и сетевой);

· контроль алгоритмов защиты;

· проверку и подтверждение правильности функционирования технического и программного обеспечения.

Для надёжной защиты информации и выявления случаев неправомочных действий проводится регистрация работы системы: создаются специальные дневники и протоколы, в которых фиксируются все действия, имеющие отношение к защите информации в системе. Используются также специальные программы для тестирования системы защиты. Периодически или в случайно выбранные моменты времени они проверяют работоспособность аппаратных и программных средств защиты.

К отдельной группе мер по обеспечению сохранности информации и выявлению несанкционированных запросов относятся программы обнаружения нарушений в режиме реального времени. Программы данной группы формируют специальный сигнал при регистрации действий, которые могут привести к неправомерным действиям по отношению к защищаемой информации. Сигнал может содержать информацию о характере нарушения, месте его возникновения и другие характеристики. Кроме того, программы могут запретить доступ к защищаемой информации или симулировать такой режим работы (например, моментальная загрузка устройств ввода-вывода), который позволит выявить нарушителя и задержать его соответствующей службой.

Один из распространённых способов защиты - явное указание секретности выводимой информации. Это требование реализуется с помощью соответствующих программных средств.

Оснастив сервер или сетевые рабочие станции, например, устройством чтения смарт-карточек и специальным программным обеспечением, можно значительно повысить степень защиты от несанкционированного доступа. В этом случае для доступа к компьютеру пользователь должен вставить смарт-карту в устройство чтения и ввести свой персональный код.

Смарт-карты управления доступом позволяют реализовать, в частности, такие функции, как контроль входа, доступ к устройствам персонального компьютера, доступ к программам, файлам и командам.

В мостах и маршрутизаторах удаленного доступа применяется сегментация пакетов - их разделение и передача параллельно по двум линиям, - что делает невозможным "перехват" данных при незаконном подключении "хакера" к одной из линий. К тому же используемая при передаче данных процедура сжатия передаваемых пакетов гарантирует невозможность расшифровки "перехваченных" данных. Кроме того, мосты и маршрутизаторы удаленного доступа могут быть запрограммированы таким образом, что удаленные пользователи будут ограничены в доступе к отдельным ресурсам сети главного офиса.

Механизмы обеспечения безопасности

1. Криптография.

Для обеспечения секретности применяется шифрование, или криптография, позволяющая трансформировать данные в зашифрованную форму, из которой извлечь исходную информацию можно только при наличии ключа.

В основе шифрования лежат два основных понятия: алгоритм и ключ. Алгоритм - это способ закодировать исходный текст, в результате чего получается зашифрованное послание. Зашифрованное послание может быть интерпретировано только с помощью ключа.

Все элементы систем защиты подразделяются на две категории - долговременные и легко сменяемые. К долговременным элементам относятся те элементы, которые относятся к разработке систем защиты и для изменения требуют вмешательства специалистов или разработчиков. К легко сменяемым элементам относятся элементы системы, которые предназначены для произвольного модифицирования или модифицирования по заранее заданному правилу, исходя из случайно выбираемых начальных параметров. К легко сменяемым элементам относятся, например, ключ, пароль, идентификация и т.п.

Секретность информации обеспечивается введением в алгоритмы специальных ключей (кодов). Использование ключа при шифровании предоставляет два существенных преимущества. Во-первых, можно использовать один алгоритм с разными ключами для отправки посланий разным адресатам. Во-вторых, если секретность ключа будет нарушена, его можно легко заменить, не меняя при этом алгоритм шифрования. Таким образом, безопасность систем шифрования зависит от секретности используемого ключа, а не от секретности алгоритма шифрования.

Важно отметить, что возрастающая производительность техники приводит к уменьшению времени, требующегося для вскрытия ключей, и системам обеспечения безопасности приходится использовать всё более длинные ключи, что, в свою очередь, ведёт к увеличению затрат на шифрование.

Поскольку столь важное место в системах шифрования уделяется секретности ключа, то основной проблемой подобных систем является генерация и передача ключа.

Существуют две основные схемы шифрования: симметричное шифрование (его также иногда называют традиционным или шифрованием с секретным ключом) и шифрование с открытым ключом (иногда этот тип шифрования называют асимметричным).

При симметричном шифровании отправитель и получатель владеют одним и тем же ключом (секретным), с помощью которого они могут зашифровывать и расшифровывать данные.

Электронная подпись

При помощи электронной подписи получатель может убедиться в том, что полученное им сообщение послано не сторонним лицом, а имеющим определённые права отправителем. Электронные подписи создаются шифрованием контрольной суммы и дополнительной информации при помощи личного ключа отправителя. Таким образом, кто угодно может расшифровать подпись, используя открытый ключ, но корректно создать подпись может только владелец личного ключа. Для защиты от перехвата и повторного использования подпись включает в себя уникальное число - порядковый номер.

Аутентификация

Аутентификация является одним из самых важных компонентов организации защиты информации в сети. Прежде чем пользователю будет предоставлено право получить тот или иной ресурс, необходимо убедиться, что он действительно тот, за кого себя выдаёт.

При получении запроса на использование ресурса от имени какого-либо пользователя сервер, предоставляющий данный ресурс, передаёт управление серверу аутентификации. После получения положительного ответа сервера аутентификации пользователю предоставляется запрашиваемый ресурс.

При аутентификации используется, как правило, принцип, получивший название “что он знает”, - пользователь знает некоторое секретное слово, которое он посылает серверу аутентификации в ответ на его запрос. Одной из схем аутентификации является использование стандартных паролей. Пароль - вводится им в начале сеанса взаимодействия с сетью, а иногда и в конце сеанса (в особо ответственных случаях пароль нормального выхода из сети может отличаться от входного). Эта схема является наиболее уязвимой с точки зрения безопасности - пароль может быть перехвачен и использован другим лицом.

Чаще всего используются схемы с применением одноразовых паролей. Даже будучи перехваченным, этот пароль будет бесполезен при следующей регистрации, а получить следующий пароль из предыдущего является крайне трудной задачей. Для генерации одноразовых паролей используются как программные, так и аппаратные генераторы, представляющие собой устройства, вставляемые в слот компьютера. Знание секретного слова необходимо пользователю для приведения этого устройства в действие.

Защита сетей

В последнее время корпоративные сети всё чаще включаются в Интернет или даже используют его в качестве своей основы. Для защиты корпоративных информационных сетей используются брандмауэры. Брандмауэры - это система или комбинация систем, позволяющие разделить сеть на две или более частей и реализовать набор правил, определяющих условия прохождения пакетов из одной части в другую. Как правило, эта граница проводится между локальной сетью предприятия и INTERNETOM, хотя её можно провести и внутри. Однако защищать отдельные компьютеры невыгодно, поэтому обычно защищают всю сеть. Брандмауэр пропускает через себя весь трафик и для каждого проходящего пакета принимает решение - пропускать его или отбросить. Для того чтобы брандмауэр мог принимать эти решения, для него определяется набор правил.

Брандмауэр может быть реализован как аппаратными средствами (то есть как отдельное физическое устройство), так и в виде специальной программы, запущенной на компьютере.

Как правило, в операционную систему, под управлением которой работает брандмауэр, вносятся изменения, цель которых - повышение защиты самого брандмауэра. Эти изменения затрагивают как ядро ОС, так и соответствующие файлы конфигурации. На самом брандмауэре не разрешается иметь разделов пользователей, а следовательно, и потенциальных дыр - только раздел администратора.

Некоторые брандмауэры работают только в однопользовательском режиме, а многие имеют систему проверки целостности программных кодов.

Брандмауэр обычно состоит из нескольких различных компонентов, включая фильтры или экраны, которые блокируют передачу части трафика.

Все брандмауэры можно разделить на два типа:

· пакетные фильтры, которые осуществляют фильтрацию IP-пакетов средствами фильтрующих маршрутизаторов;

· серверы прикладного уровня, которые блокируют доступ к определённым сервисам в сети.

Таким образом, брандмауэр можно определить как набор компонентов или систему, которая располагается между двумя сетями и обладает следующими свойствами:

· весь трафик из внутренней сети во внешнюю и из внешней сети во внутреннюю должен пройти через эту систему;

· только трафик, определённый локальной стратегией защиты, может пройти через эту систему;

В первой части «Основ информационной безопасности» нами были рассмотрены основные виды угроз информационной безопасности . Для того чтобы мы могли приступить к выбору средств защиты информации, необходимо более детально рассмотреть, что же можно отнести к понятию информации.

Информация и ее классификация

Существует достаточно много определений и классификаций «Информации». Наиболее краткое и в тоже время емкое определение дано в федеральном законе от 27 июля 2006 года № 149-ФЗ (ред. от 29.07.2017 года) , статья 2: Информация – это сведения (сообщения, данные) независимо от формы их представления».

Информацию можно классифицировать по нескольким видам и в зависимости от категории доступа к ней подразделяется на общедоступную информацию , а также на информацию, доступ к которой ограничен – конфиденциальные данные и государственная тайна .

Информация в зависимости от порядка ее предоставления или распространения подразделяется на информацию:

  1. Свободно распространяемую
  2. Предоставляемую по соглашению лиц , участвующих в соответствующих отношениях
  3. Которая в соответствии с федеральными законами подлежит предоставлению или распространению
  4. Распространение, которой в Российской Федерации ограничивается или запрещается
Информация по назначению бывает следующих видов:
  1. Массовая - содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.
  2. Специальная - содержит специфический набор понятий, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.
  3. Секретная - доступ, к которой предоставляется узкому кругу лиц и по закрытым (защищённым) каналам.
  4. Личная (приватная) - набор сведений о какой-либо личности, определяющий социальное положение и типы социальных взаимодействий.
Средства защиты информации необходимо применять непосредственно к информации доступ к которой ограничен - это государственная тайна и конфиденциальные данные .

Согласно закона РФ от 21.07.1993 N 5485-1 (ред. от 08.03.2015) «О государственной тайне» статья 5. «Перечень сведений составляющих государственную тайну» относится:

  1. Сведения в военной области.
  2. Сведения в области экономики, науки и техники.
  3. Сведения в области внешней политики и экономики.
  4. Сведения в области разведывательной, контрразведывательной и оперативно-розыскной деятельности , а также в области противодействия терроризму и в области обеспечения безопасности лиц, в отношении которых принято решение о применении мер государственной защиты.
Перечень сведений, которые могут составлять конфиденциальную информацию, содержится в указе президента от 6 марта 1997 г. №188 (ред. от 13 июля 2015 г.) «Об утверждении перечня сведений конфиденциального характера» .

Конфиденциальные данные – это информация, доступ к которой ограничен в соответствии с законами государства и нормами, которые компании устанавливаются самостоятельно. Можно выделит следующие виды конфиденциальных данных:

  • Личные конфиденциальные данные: Сведения о фактах, событиях и обстоятельствах частной жизни гражданина, позволяющие идентифицировать его личность (персональные данные), за исключением сведений, подлежащих распространению в средствах массовой информации в установленных федеральными законами случаях. Исключением является только информация, которая распространяется в СМИ.
  • Служебные конфиденциальные данные: Служебные сведения, доступ к которым ограничен органами государственной власти в соответствии с Гражданским кодексом Российской Федерации и федеральными законами (служебная тайна).
  • Судебные конфиденциальные данные: О государственной защите судей, должностных лиц правоохранительных и контролирующих органов. О государственной защите потерпевших, свидетелей и иных участников уголовного судопроизводства. Сведения, содержащиеся в личных делах осужденных, а также сведения о принудительном исполнении судебных актов, актов других органов и должностных лиц, кроме сведений, которые являются общедоступными в соответствии с Федеральным законом от 2 октября 2007 г. N 229-ФЗ «Об исполнительном производстве».
  • Коммерческие конфиденциальные данные: все виды информации, которая связана с коммерцией (прибылью) и доступ к которой ограничивается законом или сведения о сущности изобретения, полезной модели или промышленного образца до официальной публикации информации о них предприятием (секретные разработки, технологии производства и т.д.).
  • Профессиональные конфиденциальные данные: Сведения, связанные с профессиональной деятельностью, доступ к которым ограничен в соответствии с Конституцией Российской Федерации и федеральными законами (врачебная, нотариальная, адвокатская тайна, тайна переписки, телефонных переговоров, почтовых отправлений, телеграфных или иных сообщений и так далее)


Рисунок 1. Классификация видов информации.

Персональные данные

Отдельно стоит уделить внимание и рассмотреть персональные данные. Согласно федерального закона от 27.07.2006 № 152-ФЗ (ред. от 29.07.2017) «О персональных данных» , статья 4: Персональные данные – это любая информация, относящаяся к прямо или косвенно определенному или определяемому физическому лицу (субъекту персональных данных).

Оператором персональных данных является - государственный орган, муниципальный орган, юридическое или физическое лицо, самостоятельно или совместно с другими лицами организующие и (или) осуществляющие обработку персональных данных, а также определяющие цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

Обработка персональных данных - любое действие (операция) или совокупность действий (операций), совершаемых с использованием средств автоматизации или без использования таких средств с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.

Права на обработку персональных данных закреплено в положениях о государственных органах, федеральными законами, лицензиями на работу с персональными данными, которые выдает Роскомнадзор или ФСТЭК.

Компании, которые профессионально работают с персональными данными широкого круга лиц, например, хостинг компании виртуальных серверов или операторы связи, должны войти в реестр, его ведет Роскомнадзор.

Для примера наш хостинг виртуальных серверов VPS.HOUSE осуществляет свою деятельность в рамках законодательства РФ и в соответствии с лицензиями Федеральной службы по надзору в сфере связи, информационных технологий и массовых коммуникаций №139322 от 25.12.2015 (Телематические услуги связи) и №139323 от 25.12.2015 (Услуги связи по передаче данных, за исключением услуг связи по передаче данных для целей передачи голосовой информации) .

Исходя из этого любой сайт, на котором есть форма регистрации пользователей, в которой указывается и в последствии обрабатывается информация, относящаяся к персональным данным, является оператором персональных данных.

Учитывая статью 7, закона № 152-ФЗ «О персональных данных» , операторы и иные лица, получившие доступ к персональным данным, обязаны не раскрывать третьим лицам и не распространять персональные данные без согласия субъекта персональных данных, если иное не предусмотрено федеральным законом. Соответственно любой оператор персональных данных, обязан обеспечить необходимую безопасность и конфиденциальность данной информации.

Для того чтобы обеспечить безопасность и конфиденциальность информации необходимо определить какие бывают носители информации, доступ к которым бывает открытым и закрытым. Соответственно способы и средства защиты подбираются так же в зависимости и от типа носителя.

Основные носители информации:

  • Печатные и электронные средства массовой информации, социальные сети, другие ресурсы в интернете;
  • Сотрудники организации, у которых есть доступ к информации на основании своих дружеских, семейных, профессиональных связей;
  • Средства связи, которые передают или сохраняют информацию: телефоны, АТС, другое телекоммуникационное оборудование;
  • Документы всех типов: личные, служебные, государственные;
  • Программное обеспечение как самостоятельный информационный объект, особенно если его версия дорабатывалась специально для конкретной компании;
  • Электронные носители информации, которые обрабатывают данные в автоматическом порядке.
Определив, какая информация подлежит защите, носители информации и возможный ущерб при ее раскрытии, Вы можете подобрать необходимые средства защиты.

Классификация средств защиты информации


В соответствии с федеральным законом от 27 июля 2006 года № 149-ФЗ (ред. от 29.07.2017 года) «Об информации, информационных технологиях и о защите информации» , статья 7, п. 1. и п. 4:

1. Защита информации представляет собой принятие правовых, организационных и технических мер , направленных на:

  • Обеспечение защиты информации от неправомерного доступа, уничтожения, модифицирования, блокирования, копирования, предоставления, распространения, а также от иных неправомерных действий в отношении такой информации;
  • Соблюдение конфиденциальности информации ограниченного доступа;
  • Реализацию права на доступ к информации.
4. Обладатель информации, оператор информационной системы в случаях, установленных законодательством Российской Федерации, обязаны обеспечить :
  • Предотвращение несанкционированного доступа к информации и (или) передачи ее лицам, не имеющим права на доступ к информации;
  • Своевременное обнаружение фактов несанкционированного доступа к информации;
  • Предупреждение возможности неблагоприятных последствий нарушения порядка доступа к информации;
  • Недопущение воздействия на технические средства обработки информации, в результате которого нарушается их функционирование;
  • Возможность незамедлительного восстановления информации, модифицированной или уничтоженной вследствие несанкционированного доступа к ней;
  • Постоянный контроль за обеспечением уровня защищенности информации;
  • Нахождение на территории Российской Федерации баз данных информации, с использованием которых осуществляются сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение персональных данных граждан Российской Федерации (п. 7 введен Федеральным законом от 21.07.2014 № 242-ФЗ ).
Исходя из закона № 149-ФЗ защиту информации можно разделить так же на несколько уровней:
  1. Правовой уровень обеспечивает соответствие государственным стандартам в сфере защиты информации и включает авторское право, указы, патенты и должностные инструкции.
    Грамотно выстроенная система защиты не нарушает права пользователей и нормы обработки данных.
  2. Организационный уровень позволяет создать регламент работы пользователей с конфиденциальной информацией, подобрать кадры, организовать работу с документацией и носителями данных.
    Регламент работы пользователей с конфиденциальной информацией называют правилами разграничения доступа. Правила устанавливаются руководством компании совместно со службой безопасности и поставщиком, который внедряет систему безопасности. Цель – создать условия доступа к информационным ресурсам для каждого пользователя, к примеру, право на чтение, редактирование, передачу конфиденциального документа.
    Правила разграничения доступа разрабатываются на организационном уровне и внедряются на этапе работ с технической составляющей системы.
  3. Технический уровень условно разделяют на физический, аппаратный, программный и математический (криптографический).

Средства защиты информации

Средства защиты информации принято делить на нормативные (неформальные) и технические (формальные) .

Неформальные средства защиты информации

Неформальными средствами защиты информации – являются нормативные(законодательные), административные(организационные) и морально-этические средства, к которым можно отнести: документы, правила, мероприятия.

Правовую основу (законодательные средства ) информационной безопасности обеспечивает государство. Защита информации регулируется международными конвенциями, Конституцией, федеральными законами «Об информации, информационных технологиях и о защите информации», законы Российской Федерации «О безопасности», «О связи», «О государственной тайне» и различными подзаконными актами.

Так же некоторые из перечисленных законов были приведены и рассмотрены нами выше, в качестве правовых основ информационной безопасности. Не соблюдение данных законов влечет за собой угрозы информационной безопасности, которые могут привести к значительным последствиям, что в свою очередь наказуемо в соответствии с этими законами в плоть до уголовной ответственности.

Государство также определят меру ответственности за нарушение положений законодательства в сфере информационной безопасности. Например, глава 28 «Преступления в сфере компьютерной информации» в Уголовном кодексе Российской Федерации, включает три статьи:

  • Статья 272 «Неправомерный доступ к компьютерной информации»;
  • Статья 273 «Создание, использование и распространение вредоносных компьютерных программ»;
  • Статья 274 «Нарушение правил эксплуатации средств хранения, обработки или передачи компьютерной информации и информационно-телекоммуникационных сетей».
Административные (организационные) мероприятия играют существенную роль в создании надежного механизма защиты информации. Так как возможности несанкционированного использования конфиденциальных сведений в значительной мере обусловливаются не техническими аспектами, а злоумышленными действиями. Например нерадивостью, небрежностью и халатностью пользователей или персонала защиты.

Для снижения влияния этих аспектов необходима совокупность организационно-правовых и организационно-технических мероприятий, которые исключали бы или сводили к минимуму возможность возникновения угроз конфиденциальной информации.

В данной административно-организационной деятельности по защите информационной для сотрудников служб безопасности открывается простор для творчества.

Это и архитектурно-планировочные решения, позволяющие защитить переговорные комнаты и кабинеты руководства от прослушивания, и установление различных уровней доступа к информации.

С точки зрения регламентации деятельности персонала важным станет оформление системы запросов на допуск к интернету, внешней электронной почте, другим ресурсам. Отдельным элементом станет получение электронной цифровой подписи для усиления безопасности финансовой и другой информации, которую передают государственным органам по каналам электронной почты.

К морально-этическим средствам можно отнести сложившиеся в обществе или данном коллективе моральные нормы или этические правила, соблюдение которых способствует защите информации, а нарушение их приравнивается к несоблюдению правил поведения в обществе или коллективе. Эти нормы не являются обязательными, как законодательно утвержденные нормы, однако, их несоблюдение ведет к падению авторитета, престижа человека или организации.

Формальные средства защиты информации

Формальные средства защиты – это специальные технические средства и программное обеспечение, которые можно разделить на физические, аппаратные, программные и криптографические.

Физические средства защиты информации – это любые механические, электрические и электронные механизмы, которые функционируют независимо от информационных систем и создают препятствия для доступа к ним.

Замки, в том числе электронные, экраны, жалюзи призваны создавать препятствия для контакта дестабилизирующих факторов с системами. Группа дополняется средствами систем безопасности, например, видеокамерами, видеорегистраторами, датчиками, выявляющие движение или превышение степени электромагнитного излучения в зоне расположения технических средств для снятия информации.

Аппаратный средства защиты информации – это любые электрические, электронные, оптические, лазерные и другие устройства, которые встраиваются в информационные и телекоммуникационные системы: специальные компьютеры, системы контроля сотрудников, защиты серверов и корпоративных сетей. Они препятствуют доступу к информации, в том числе с помощью её маскировки.

К аппаратным средствам относятся: генераторы шума, сетевые фильтры, сканирующие радиоприемники и множество других устройств, «перекрывающих» потенциальные каналы утечки информации или позволяющих их обнаружить.

Программные средства защиты информации – это простые и комплексные программы, предназначенные для решения задач, связанных с обеспечением информационной безопасности.

Примером комплексных решений служат DLP-системы и SIEM-системы.

DLP-системы («Data Leak Prevention» дословно «предотвращение утечки данных») соответственно служат для предотвращения утечки, переформатирования информации и перенаправления информационных потоков.

SIEM-системы («Security Information and Event Management», что в переводе означает «Управление событиями и информационной безопасностью») обеспечивают анализ в реальном времени событий (тревог) безопасности, исходящих от сетевых устройств и приложений. SIEM представлено приложениями, приборами или услугами, и используется также для журналирования данных и генерации отчетов в целях совместимости с прочими бизнес-данными.

Программные средства требовательны к мощности аппаратных устройств, и при установке необходимо предусмотреть дополнительные резервы.

Математический (криптографический) – внедрение криптографических и стенографических методов защиты данных для безопасной передачи по корпоративной или глобальной сети.

Криптография считается одним из самых надежных способов защиты данных, ведь она охраняет саму информацию, а не доступ к ней. Криптографически преобразованная информация обладает повышенной степенью защиты.

Внедрение средств криптографической защиты информации предусматривает создание программно-аппаратного комплекса, архитектура и состав которого определяется, исходя из потребностей конкретного заказчика, требований законодательства, поставленных задач и необходимых методов, и алгоритмов шифрования.

Сюда могут входить программные компоненты шифрования (криптопровайдеры), средства организации VPN, средства удостоверения, средства формирования и проверки ключей и электронной цифровой подписи.

Средства шифрования могут поддерживать алгоритмы шифрования ГОСТ и обеспечивать необходимые классы криптозащиты в зависимости от необходимой степени защиты, нормативной базы и требований совместимости с иными, в том числе, внешними системами. При этом средства шифрования обеспечивают защиту всего множества информационных компонент в том числе файлов, каталогов с файлами, физических и виртуальных носителей информации, целиком серверов и систем хранения данных.

В заключение второй части рассмотрев вкратце основные способы и средства защиты информации, а так же классификацию информации, можно сказать следующее: О том что еще раз подтверждается давно известный тезис, что обеспечение информационной безопасности - это целый комплекс мер, который включает в себя все аспекты защиты информации, к созданию и обеспечению которого, необходимо подходить наиболее тщательно и серьезно.

Необходимо строго соблюдать и ни при каких обстоятельствах нельзя нарушать «Золотое правило» - это комплексный подход.

Для более наглядного представления средства защиты информации, именно как неделимый комплекс мер, представлены ниже на рисунке 2, каждый из кирпичиков которого, представляет собой защиту информации в определенном сегменте, уберите один из кирпичиков и возникнет угроза безопасности.


Рисунок 2. Классификация средства защиты информации.