Тиристор вместо латра цветная схема. Латр (лабораторный автотрансформатор). Автотрансформаторы имеют широкую область использования в разных сферах деятельности человека

Лабораторный автотрансформатор, или, сокращённо, ЛАТР - это устройство для изменения напряжения переменного тока у различных электроприборов. Это устройство является разновидностью обыкновенного трансформатора. В процессе изменения напряжения при помощи ЛАТРа частота прибора на любом этапе сохраняется прежней. Основана его работа на явлении электромагнитной индукции. Устройство включает в себя множество дополнительных модификаций.

Устройство автотрансформатора

Имеется одна общая обмотка, расположенная на магнитопроводе ЛАТРа, а от нее уже отходят три дополнительных вывода. У старых моделей автотрансформатора на вторичной обмотке расположен токосъемный контакт, позволяющий:

  • выходному напряжению плавно регулироваться;
  • в один момент сменять одно значение напряжения на другое;
  • изменять интенсивность нагрева жала у паяльника;
  • регулировать электроосвещение.

Наиболее распространенный тип автотрансформатора - это тороидальный магнитопровод. Он представляет собой сердечник в форме кольца, сделанный из электротехнической стали.

На сердечник намотана медная проволока, или обмотка. Кроме того, конструкция прибора имеет дополнительную отпайку - отвод от обмотки. В целом контактов получается ровно три.

Для больших трансформаций лучше всего не использовать ЛАТР. Причины в следующем:

  1. Слишком высоки шансы получить в результате короткое замыкание. Разобраться с проблемой помогут специально приспособленные для этого электронные схемы или дополнительное сопротивление.
  2. Обычный трансформатор подходит больше в силу множества причин, таких, как более высокий КПД, меньшие расходы на сталь, уменьшенные габариты и вес, сниженная цена на инструмент.

Схема электронного прибора

Купить надежный ЛАТР при имеющемся ассортименте - задача не из легких. Слишком много низкокачественных изделий представлено на рынке. Как вариант, можно приобрести промышленный образец, но цены на него довольно высокие, да и габариты немаленькие. В этом случае более приемлемым вариантом будет создать автотрансформатор своими руками.

Необходимые для сборки материалы

Материалы, которые обязательно понадобятся для сборки самодельного электронного ЛАТРа на полевом транзисторе, следующие:

  • медная проволока (обмотка);
  • лак, обладающий термоустойчивостью;
  • тряпичная изолента;
  • магнитопровод (подойдет как стержневой, так и тороидальный тип);
  • корпус с закрепленными разъемами, к которому будет подключаться питание и нагрузка.

Расчёт обмотки ЛАТРа

Следом добавьте к автотрансформатору корпус, и сделайте крепление для ручки регулятора. K ручке прикрепите ползунок c угольной щёткой. Нужно сделать так, чтобы щётка плотно касалась верхней части обмотки. Ту область, по которой щётка будет передвигаться, необходимо пометить, и в месте пометки удалить изоляцию. Так, щётка будет иметь прямой электрический контакт со вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, затенить одной, соединённой c угольной щёткой. При подсоединении вольтметр закрепляется.

Теперь необходимо убедиться в том, что автотрансформатор работает так, как ему положено. Чтобы проверить качество работы устройства, выполняются следующие пункты:

Если никаких проблем не обнаружено, то лабораторный автотрансформатор полностью готов к применению.

В лабораторных стендах моего колледжа регулярно выходят из строя лабораторные автотрансформаторы (ЛАТРы). Так получилось, что путем проб и ошибок мне удалось освоить технологию их ремонта. На данный момент мне удалось отремонтировать уже три лабораторных автотрансформатора, причем перематывал ЛАТРы я у себя в комнате в общежитии. Буду рад, если изложенная здесь технология перемотки ЛАТРов окажется кому-то полезной. Да, это моя первая статья, поэтому не судите строго :-)

Для начала краткий курс устройства ЛАТРа (смотрите рисунок).

У ЛАТРа есть две обмотки соединенных последовательно. На первичную обмотку подается сетевое напряжение (это необходимо учесть при перемотке). Вторичная обмотка подключается к первичной. Она расчитана на напряжение от 0-240 В. На выводы А и N подается напряжение в магнитопроводе создается магнитный поток который наводит в обмотках ток снимаемый с зажимов А1 и N.

Начнем с того, что нужно определить диаметр провода. Это можно с помощью штангенциркуля. Для этого нужно сначала замерить диаметр родного провода, а затем исходя из этого искать подходящий нам провод. Можно взять кусок старого провода и потом сравнивать его с искомым образцом.

Потом необходимо определить длину провода. Это можно осуществить с помощью обычного математического выражения: L=lвитка×W 1,2 см,

где L - необходимая длина провода (в сантиметрах), lвитка - длинна одного витка; W 1,2 — количество витков вторичной и первичной обмотки.

1) Расчет количества витков по формулам. Этот метод довольно простой, но в нем большая вероятность допустить погрешность, например в расчетах или в измерениях площади окна магнитопровода. Этот метод приведен ниже:

Находим мощность автотрансформатора: P=U×I,

где U - выходное напряжение, I - максимальный ток нагрузки (обычно написан на ЛАТРе).

Находится габаритная мощность: Рг=1.9* Sc * S,

где 1.9 коффициент водимый для торроидальных трансформаторов.

Необходимое количество витков на 1 вольт:

K = 35/Sc, где 35 коффициент водимый для торроидальных трансформаторов.

Определяем число витков; W1 = U1*K

Определяем размеры сердечника: Sс=((Dc-dc)/2)×h, So=πxd2/4,

где Sc- площадь сердечника трансформатора; So - площадь окна.

2) Второй вариант довольно трудоемкий, но надежный (при перемотке ЛАТРов я использовал этот метод). Этот способ определения числа витков заключается в том, что нужно отматывать старую обмотку и при этом считать количество витков. Для него необходимо: листик и ручка для того чтобы не сбиться, катушка или кусок деревяшки, чтобы наматывать туда старую обмотку, а также стальные нервы и терпение, чтобы не выкинуть его в окно после ста отсчитанных витков.

После этого отдыхаем и расслабляемся после проделанной работы, потому что далее необходимо максимум внимательности и терпения. Когда отдохнете, начинаем готовить рабочее место. Желательно, что бы оно было хорошо освещено и можно было поместить все необходимые предметы, например письменный стол со светильником или стул в комнате с хорошим освещением.

Новый провод для удобства перемотки лучше сначала намотать на деревянную болванку как показано на картинке:

Принципиальной разницы как провод улаживается, на внутреннем диаметре окна нет. Но для того чтобы уложить нужное количество витков, необходимо намотать первый виток к нему в плотную, затем намотать второй виток, а на верх между первым и вторым уложить третий виток и так повторять, пока не намотаем нужное количество витков на напряжение 220В. После этого делаем вывод зажима сети и от этого вывода доматываем вторичную обмотку. На внешнем диаметре окна магнитопровода все витки необходимо укладывать последовательно один за одним как показано на рисунке.

После того как перемотка будет закончена обмотку необходимо пропитать лаком для улучшения изоляционных свойств и что бы закрепить намотанный провод на своем месте. Так как много лака здесь не потребуется, то можно использовать любой устойчивый к температуре до 105 о С. После пропитки лаком автотрансформатор оставляем на пару часов сохнуть. Для лучшего эффекта можно поместить в теплое место. Комнату где производились работы покинуть и очень желательно открыть форточку для проветривания.

После сушки необходимо сделать дорожку для съема напряжения. Это можно сделать с помощью ножа или шлифовальной бумаги. Делаем дорожку от внешнего окна к внутреннему длиной около 3 см (показано на рисунке ниже).


В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:


Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:


Помехи в таком ЛАТРе, всё же были из - за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:


В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа

Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.


Вот его схема:


Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.


На красный и чёрный провода подаём питание.


Добавляется напряжение с первой обмотки.


Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.


Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Изготовление ЛАТРа

Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:


С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.


Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.


Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.


Высоковольтный клеммник надёжно крепим к трансформатору.


На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.

Понадобится

Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 - 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 - на 2 - 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 - 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 - по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 - терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.
Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.




Размещаем на плате детали и припаиваем их.







Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.

Лабораторный автотрансформатор, или, сокращённо, ЛАТР - это устройство для изменения напряжения переменного тока у различных электроприборов. Это устройство является разновидностью обыкновенного трансформатора. В процессе изменения напряжения при помощи ЛАТРа частота прибора на любом этапе сохраняется прежней. Основана его работа на явлении электромагнитной индукции. Устройство включает в себя множество дополнительных модификаций.

Устройство автотрансформатора

Имеется одна общая обмотка, расположенная на магнитопроводе ЛАТРа, а от нее уже отходят три дополнительных вывода. У старых моделей автотрансформатора на вторичной обмотке расположен токосъемный контакт, позволяющий:

  • выходному напряжению плавно регулироваться;
  • в один момент сменять одно значение напряжения на другое;
  • изменять интенсивность нагрева жала у паяльника;
  • регулировать электроосвещение.

Наиболее распространенный тип автотрансформатора - это тороидальный магнитопровод. Он представляет собой сердечник в форме кольца, сделанный из электротехнической стали.

На сердечник намотана медная проволока, или обмотка. Кроме того, конструкция прибора имеет дополнительную отпайку - отвод от обмотки. В целом контактов получается ровно три.

Для больших трансформаций лучше всего не использовать ЛАТР. Причины в следующем:

  1. Слишком высоки шансы получить в результате короткое замыкание. Разобраться с проблемой помогут специально приспособленные для этого электронные схемы или дополнительное сопротивление.
  2. Обычный трансформатор подходит больше в силу множества причин, таких, как более высокий КПД, меньшие расходы на сталь, уменьшенные габариты и вес, сниженная цена на инструмент.

Схема электронного прибора

Купить надежный ЛАТР при имеющемся ассортименте - задача не из легких. Слишком много низкокачественных изделий представлено на рынке. Как вариант, можно приобрести промышленный образец, но цены на него довольно высокие, да и габариты немаленькие. В этом случае более приемлемым вариантом будет создать автотрансформатор своими руками.

Необходимые для сборки материалы

Материалы, которые обязательно понадобятся для сборки самодельного электронного ЛАТРа на полевом транзисторе, следующие:

  • медная проволока (обмотка);
  • лак, обладающий термоустойчивостью;
  • тряпичная изолента;
  • магнитопровод (подойдет как стержневой, так и тороидальный тип);
  • корпус с закрепленными разъемами, к которому будет подключаться питание и нагрузка.

Расчёт обмотки ЛАТРа

Для начала необходимо определиться, в каких пределах на тиристорах будет работать ЛАТР. Оптимальное значение питания сети - 220 В. Значения вторичных напряжений - соответственно, 127, 180 и 250 В. Мощность при таких параметрах не должна превышать 300 Вт. Но можно определить эти значения и самостоятельно, главное, чтобы всё друг другу соответствовало.

Теперь нужно рассчитать обмотку. Рассчитывать её надо по большему току. Наибольшее значение тока можно получить, преобразовывая напряжение 200 В в 127 В. Автотрансформатор при таких условиях становится понижающим. Максимальный ток, который проходит в обмотке обеих сетей, рассчитывается следующим образом:

I = I2 - I1 = P / U2 - P / U1 (I, I2, I3 - токи в соответствующих участках цепи, A, P - мощность, Вт, U1, U2 - напряжения первичной и вторичной цепи, В).

Диаметр провода d рассчитывается по формуле:

Существует специальная таблица, согласно которой определяется тип и сечение провода. Выбираются они с учётом расчётного тока и среднего значения плотности тока для ЛАТРа, равному 2 A/мм².

Формула для вычисления коэффициента трансформации n:

Формула для вычисления расчётной мощности Pp:

Pp = P * k * (1 - 1/n) (k - коэффициент, учитывающий КПД автотрансформатора)

W0 = m / S (W0 - количество витков, приходящихся на 1 вольт, m = 50 для стержневого и 35 для тороидального магнитопроводов).

При недостаточно высоком качестве стали значение W0 увеличивается на 20−30%. При расчёте витков оно увеличивается на 5−10%. Таким образом можно будет успешно избежать просадки напряжения. Для расчёта длины провода наматывается один виток на магнитопровод и измеряется его длина. Полученное значение умножается на максимальное количество витков и прибавляется по 25−30 сантиметров для каждого вывода к клемме.

Схема подключения ЛАТР 2м

Сначала берётся тороидальный магнитопровод, о котором уже упоминалось выше. То место, на которое будет накладываться обмотка, изолируется тряпичной изолентой. Выводим провод для первой клеммы питания (все последующие провода выводятся без разрыва). Закрепляем на магнитопроводе первый виток и накручиваем рассчитанное количество. По достижении витка, который соответствует выбранному значению напряжения, выводится петля, следом необходимо продолжать наматывать провод.

После просушки автотрансформатор помещается в корпус. Первый выведенный провод присоединяется к разъёму питания. Этот разъем должен быть электрически связан c общей клеммой нагрузки, поэтому соединяет провода между собой каким-нибудь проводником.

Петлю, выведенную для 220 В, соедините co второй клеммой питания. Остальные провода подключите к соответствующим клеммам вторичной цепи. Существует специальная схема автотрансформатора, на которой изображены выводы проводов. По ней нужно ориентироваться при подключении проводов к клеммам.

Следом добавьте к автотрансформатору корпус, и сделайте крепление для ручки регулятора. K ручке прикрепите ползунок c угольной щёткой. Нужно сделать так, чтобы щётка плотно касалась верхней части обмотки. Ту область, по которой щётка будет передвигаться, необходимо пометить, и в месте пометки удалить изоляцию. Так, щётка будет иметь прямой электрический контакт со вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, затенить одной, соединённой c угольной щёткой. При подсоединении вольтметр закрепляется.

Теперь необходимо убедиться в том, что автотрансформатор работает так, как ему положено. Чтобы проверить качество работы устройства, выполняются следующие пункты:

Если никаких проблем не обнаружено, то лабораторный автотрансформатор полностью готов к применению.

Для плавной регулировки напряжения переменного тока в различных работах, связанных с электротехникой, служат автотрансформаторы (ЛАТР). Их чаще всего используют для изменения напряжения в бытовых приборах, строительстве.

Автотрансформатор – это один из видов трансформаторов. Две обмотки в этом приборе имеют между собой прямое соединение. Вследствие этого между ними появляются два вида связи, одна из которых электромагнитная, а другая электрическая. Катушка имеет несколько выводов с разными значениями выхода напряжения. Отличие от обычного трансформатора состоит в повышенной эффективности, вследствие частичного изменения мощности.

Конструктивные особенности

Трансформаторами называют электроаппаратуру с наличием более 2-х и более обмоток, которые имеют индуктивную связь, служащую для изменения электроэнергии по напряжению.

Обмотка может быть одна только у автотрансформатора, либо несколько обмоток, охваченных магнитным потоком, намотанных на сердечник с ферромагнитными свойствами, у других трансформаторов.

Сегодня приобрели популярность 1-фазные трансформаторы (ЛАТР). Это лабораторный вариант трансформатора, в котором обе обмотки между собой не изолированы, а имеют прямое соединение, поэтому кроме электромагнитной связи у них имеется электрическая связь. Такая общая катушка оснащена несколькими выводами. На их выходе можно получить разное по величине напряжение.

Принцип работы

Благодаря особенности конструкции автотрансформаторы могут выдавать как пониженное напряжение, так и повышенное. На рисунке показаны схемы автотрансформаторов с понижением и повышением напряжения.

Если подключить источник переменного тока к Х и «а», то создается магнитный поток. В этот момент в витках катушки индуцируется разность потенциалов одинакового значения. В итоге, между Х и «а» появляется ЭДС, равная значению ЭДС 1-го витка, умноженного на число витков обмотки, находящихся в промежутке между этими точками.

При подключении нагрузки потребителя к катушке к клеммам Х и «а», ток вторичной катушки пойдет по участку обмотки между этими точками. Имея ввиду то, что первичный и вторичный токи между собой накладываются друг на друга, между Х и «а» будет проходить незначительный ток.

Из-за такой особенности работы автотрансформатора основную часть обмотки выполняют из провода малого поперечного сечения, что уменьшает его стоимость. Если необходимо изменить напряжение в небольших пределах, то целесообразно применять такие автотрансформаторы (ЛАТР).

Типы автотрансформаторов

Нашли применение несколько типов автотрансформаторов:
  • ВУ–25 — Б , служит для сглаживания вторичных токов в защитных схемах трансформаторов.
  • АТД — мощность 25 ватт, долгонасыщаемый, имеет старую конструкцию и мало используется.
  • ЛАТР — 1 , служит для применения с напряжением 127 вольт.
  • ЛАТР — 2 , применяется с напряжением 220 вольт.
  • ДАТР — 1 , служит для слабых потребителей.
  • РНО – для мощной нагруженности.
  • АТЦН применяется в измерительных телеустройствах.
Автотрансформаторы также подразделяют по мощности:
  • Малой мощности, до 1000 вольт;
  • Средней мощности, свыше 1000 вольт;
  • Силовые.
Лабораторные автотрансформаторы

Такой вариант исполнения используют в сетях низкого напряжения для регулировки напряжения в условиях лабораторий. Такие однофазные ЛАТР выполнены из ферромагнитного сердечника в виде кольца, на которое намотан один слой медного провода в изоляции.

В нескольких местах обмотки сделаны выводы в виде ответвлений. Это дает возможность применять такие устройства в качестве автотрансформаторов с возможностью повышения, либо понижения напряжения с неизменным коэффициентом трансформации. Сверху на обмотке выполнена узкая дорожка, на которой очищена изоляция. По ней двигается роликовый или щеточный контакт, позволяющий плавно изменять вторичное напряжение.

Витковых коротких замыканий в таких лабораторных автотрансформаторах не случается, так как ток нагрузки и сети в обмотке направлены навстречу друг другу и близки по значению. Мощности ЛАТР выполняют от 0,5 до 7,5 кВА.

Трехфазные трансформаторы

Кроме других вариантов исполнений существуют еще и трехфазные варианты автотрансформаторов. У них бывает, как три, так и две обмотки.

В них чаще всего соединяют в виде звезды с отдельной точкой нейтрали. Соединение звездой дает возможность понизить напряжение, рассчитанное для изоляции прибора. Для уменьшения напряжения питание подводят к клеммам А, В, С, а выход получают на клеммах а, b, с. Для повышения напряжения все делается наоборот. Такие трансформаторы используют для уменьшения уровня напряжения при запуске мощных электромоторов, а также для регулировки напряжения по ступеням в электрических печах.

Высоковольтные автотрансформаторы применяют в высоковольтных системах сетей. Использование автотрансформаторов оптимизирует эффективность энергетических систем, дает возможность уменьшить стоимость транспортировки энергии, однако при этом способствует повышению токов коротких замыканий.

Режимы работы
  • Автотрансформаторный.
  • Комбинированный.
  • Трансформаторный.

При соблюдении требований эксплуатации автотрансформаторов, в том числе соблюдения контроля температуры масла, он может функционировать длительное время без перегрева и поломок.

Достоинства и недостатки
Можно выделить такие преимущества:
  • Преимуществом можно назвать высокий КПД, потому что преобразуется лишь малая часть мощности трансформатора, а это имеет значение, когда напряжения выхода и входа отличаются на малую величину.
  • Уменьшенный расход меди в катушках, а также стали сердечника.
  • Уменьшенные размеры и вес автотрансформатора позволяют создать хорошие условия перевозки к месту монтажа. Если необходима большая мощность трансформатора, то его можно изготовить в пределах допустимых ограничений габаритов и массы для перевозки на транспорте.
  • Низкая стоимость.
  • Плавность съема напряжения с подвижного токосъемного контакта, подключенного к обмотке.
Недостатки автотрансформаторов:
  • Чаще всего катушки подключают звездой с нейтралью, которая заземлена. Соединения по другим схемам также возможны, но при их выполнении возникают неудобства, вследствие чего используются редко. Производить заземление нейтрали необходимо через сопротивление, либо глухим методом. Но нельзя забывать, что сопротивление заземления не должно допускать превышения разности потенциалов на фазах в тот момент, когда какая-либо одна фаза замкнула накоротко на землю.
  • Повышенный потенциал перенапряжений во время грозы на входе автотрансформатора делает необходимым монтаж разрядников, которые не отключаются при выключении линии.
  • Электрические цепи не изолированы друг от друга (первичная и вторичная).
  • Зависимость низкого напряжения от высокого, вследствие чего сбои и скачки высокого напряжения оказывают влияние на стабильность низкого напряжения.
  • Низкий поток рассеивания между первичной и вторичной обмоткой.
  • Изоляцию обеих обмоток приходится выполнять для высокого напряжения, так как присутствует электрическая связь обмоток.
  • Нельзя применять автотрансформаторы на 6-10 киловольт в качестве силовых с уменьшением напряжения до 380 вольт, потому что к такому оборудованию имеют доступ люди, а вследствие аварии напряжение с первичной обмотки может попасть на вторичную.
Применение
Автотрансформаторы имеют широкую область использования в разных сферах деятельности человека:
  • В устройствах малой мощности для настройки, питания и проверки промышленного и бытового электрооборудования, приборов автоматического управления, в лабораторных условиях на стендах (ЛАТРы), в устройствах и приборах связи и т.д.
  • Силовые варианты исполнений 3-фазных автотрансформаторов применяют для снижения тока запуска электродвигателей.
  • В энергетике мощные образцы автотрансформаторов применяют для осуществления связи сетей высокого напряжения с близкими по напряжению сетями. Коэффициент трансформации в таких устройствах обычно не превосходит 2 – 2,5. Чтобы изменять напряжение в еще больших размерах, требуются другие устройства, а применение автотрансформаторов становится нецелесообразным.
  • Металлургия.
  • Коммунальное хозяйство.
  • Производство техники.
  • Нефтяное и химическое производство.
  • Учебные заведения применяют ЛАТРы для показа опытов на уроках физики и химии.
  • Стабилизаторы напряжения.
  • Вспомогательное оборудование к станкам и самописцам.
Как выбрать автотрансформатор

Для начала определите, где будет использоваться автотрансформатор. Если для испытаний силового оборудования на предприятии, то необходима одна модель, а для питания автомагнитолы во время ремонта, то совсем иная.

  • Мощность . Необходимо рассчитать нагрузку всех потребителей. Их общая мощность не должна быть больше мощности автотрансформатора.
  • Интервал регулировки . Этот параметр зависит от действия прибора, то есть, на повышение или на понижение. Чаще всего приборы относятся к виду с понижением напряжения.
  • Напряжение питания . Если вы хотите подключить автотрансформатор к домашней сети, то лучше приобрести прибор на 220 вольт, а если для 3-фазной сети, то на 380 вольт.

С таким прибором вы можете изменить значения напряжения сети и выставить те значения, которые нужны для конкретного вида нагрузки.