Совмещение охлаждения и тишины жесткого диска на примере двух устройств: Titan TTC-HD90 и Scythe Quite Drive. Охлаждение HDD – методы, их особенности, преимущества и недостатки Охлаждение для жесткого диска своими руками

Держи ноги в тепле, а винчестер - в холоде

Сегодня мы рассмотрим всю продуктовую линейку кулеров Titan, предназначенных для охлаждения жёстких дисков. Некоторые из них уже были рассмотрены нами ранее по одиночке, но вот пришло время свести всё воедино и рассмотреть все модели разом. Надеюсь, что этот материал будет полезен тем, кто подбирает кулер для охлаждения жёсткого диска.

Как вам, наверное, известно, жёсткий диск не относится к числу самых горячих компонентов компьютера. Его температура, как правило, не превышает при работе 45 градусов без какого-либо дополнительного охлаждения, и в списке компьютерных "обогревателей" HDD стоит после процессора, видеокарты, блока питания и системного чипсета. Но почему же тогда с момента появления в продаже жёстких дисков с частотой вращения шпинделя 7200 оборотов в минуту, в обиход вошли кулеры для HDD? Ответ простой - винчестер представляет собой сложное механическое устройство, и его работоспособность напрямую зависит от температуры. И если процессор или видеокарту можно перегревать, не опасаясь последствий, то перегрев винчестера фиксируется его SMART-системой и записывается в памяти. В последствии, гарантийная служба вправе отказать в бесплатной замене носителя, так как были нарушены условия его эксплуатации. Кроме того, чем выше температура работы винчестера, тем меньше он проживёт. Например, вероятность выхода жёсткого диска из строя при рабочей температуре 50 градусов Цельсия в три раза выше, чем при 25 градусах Цельсия.

Температура HDD, °C Коэффициент увеличения количества отказов
25 1.0000
26 1.0507
30 1.2763
34 1.5425
38 1.8552
42 2.2208
46 2.6465
50 3.1401
54 3.7103
58 4.3664
62 5.1186
66 5.9779
70 6.9562

В таблице выше показано, насколько увеличивается количество отказов при температуре работы винчестера выше 25 градусов. Глядя на эту таблицу, делайте выводы - стоит ли охлаждать жёсткий диск, либо нет.

Для обычного жёсткого диска с частотой вращения шпинделя 7200 оборотов в минуту достаточно и обычного вентилятора, который был бы направлен на его корпус (желательно снизу, со стороны электроники). Но традиционно существуют лишь две конструкции HDD кулеров - с охлаждением корпуса HDD воздухом, забираемым снаружи компьютера и охлаждением электроники воздухом, находящимся внутри корпуса. Стоит отметить, что и в том и в другом случаях кулеры охлаждают весь жёсткий диск, но в одном случае - электронику больше механики, а в другом - наоборот. Кулеры, охлаждающие электронику HDD, предназначены для простых условий охлаждения, когда, в общем-то, вентиляция в корпусе компьютера нормальная, а винчестеров в корпусе один-два. Те же модели, которые забирают воздух из комнаты и им охлаждают HDD, предназначены для более сложных условий. Например, когда в компьютере установлен массив из нескольких винчестеров, а вентиляции в корпусе недостаточно для эффективного охлаждения дисков.

Сегодня мы рассмотрим и те и другие варианты охлаждения. Начнём с наиболее простых моделей.

Первый кулер в нашем обзоре представляет собой традиционную конструкцию - прямого охлаждения электроники.

Кулер поставляется в упаковке типа "блистер". Комплектация минимальна - сам охладитель, да комплект винтиков-шурупчиков для крепления винчестера.

Кулер для винчестера Titan TTC-HD11 имеет один вентилятор размерами 60x60x10 мм с частотой вращения лопастей 3600 оборотов в минуту. Он имеет производительность 15 CFM при уровне шума 26 дБ. Волнообразный корпус кулера помогает воздушному потоку без лишнего шума проходить по всей нижней поверхности жёсткого диска и охлаждать как электронику, так и механику.

Вентилятор мощностью 2.04 Вт подключается к жёсткому диску 4-контактным PCPlug коннектором. Разъём питания сквозной, и не занимает лишнюю розетку в компьютере. На кулеры TTC-HD11 устанавливаются вентиляторы с подшипниками скольжения и качения. Честно говоря, я никогда не встречал на подобных кулеров вентиляторы с подшипниками качения - удешевление конструкции заставляет использовать простые подшипники скольжения. Время наработки на отказ у них составляет 25 000 часов, а так как вентилятор здесь не меняется, то можно считать это время сроком жизни всего кулера.

Кулер без проблем устанавливается на 3.5" жёсткий диск. Высота TTC-HD11 составляет 14 мм, что нужно учитывать, если у вас в компьютере рядом с друг другом установлены несколько жёстких дисков.

Следующая модель, TTC-HD12 очень похожа на предыдущую. Та же конструкция прямого охлаждения электроники и нижней части банки винчестера, но с небольшими изменениями.

Кулер поставляется в такой же упаковке типа "блистер" и так же комплектуется лишь винтиками крепления к жёсткому диску.

Корпус из полупрозрачного синего пластика имеет другую выпуклую форму. В его углах выполнены пропилы для более свободного прохождения воздуха. Часто случается, что жёсткий диск торцом упирается в стенку корпуса, и в этом случае воздушный поток распределяется неравномерно - большая его часть выходит через свободное отверстие, а другая часть, натыкаясь на препятствие в виде стенки корпуса, вызывает турбулёнтность, что негативно сказывается на охлаждении и уровне шума. Отверстия в корпусе кулера TTC-HD12 решают эту проблему. Плюс, кулер выглядит красивее и более технологично.

Здесь установлен такой же вентилятор, как и на модели TTC-HD11, который имеет такой же уровень шума и точно так же намертво припаян к корпусу.

Высота TTC-HD12 составляет 15 мм, на 1 мм больше, чем у TTC-HD11. Пользуясь терминологией видеокарт, можно сказать, что с этим кулером винчестер занимает полтора 3.5" отсека.

Дальнейшее развитие конструкции с прямым обдувом электроники привело к появлению кулера TTC-HD22 с двумя вентиляторами. Вообще-то, необходимость во втором вентиляторе очень спорна. Обычно, разница в производительности одного и двух вентиляторов невелика и второй вентилятор правильнее рассматривать как резервный. Да, оба они подключены параллельно и работают одновременно. Да, в таком случае, вероятность, что кулер завоет волком в два раза выше, но... даже в случе, если один вентилятор завоет или просто остановится, второй будет продолжать свою работу и не даст диску перегреться.

Упаковка типа "блистер", которую надо резать ножницами, чтобы извлечь кулер на свет. Внутри кроме самого охладителя вы найдёте комплект для крепления его к жёсткому диску.

Здесь мы так же видим вентиляционные отверстия в корпусе, которые здесь просто необходимы, чтобы воздушные потоки, создаваемые двумя вентиляторами, меньше мешали друг другу. Отключить какой-либо из вентиляторов нельзя, как нельзя и поменять их в случае выхода из строя.

Два вентилятора 60x60x10 мм создают суммарный воздушный поток 30.06 CFM при частоте вращения лопастей 3600 об/мин и уровне шума около 26 дБ у каждого.

Я, честно сказать, не знаю, как ещё можно улучшить эту традиционную конструкцию. И, возможно, через 3-5 лет подобные кулеры останутся точно такими же, как и сегодня, как и несколько лет назад. Ну что же, перейдём к рассмотрению следующего типа охладителей с фронтальным обдувом.

Titan TTC-HDC2 и TTC-HDC3

Преимущества конструкции с фронтальным обдувом в том, что такой кулер охлаждает винчестер воздухом комнатной температуры. И если у вас в корпусе адское пекло, ваш жёсткий диск будет продолжать получать свежий атмосферный поток нормальной температуры. Именно такой способ охлаждения заложен в серверные корпуса и дисковые массивы. Подобные кулеры устанавливаются в 5.25" отсек корпуса и уже в них, как в дополнительное шасси, крепится винчестер. Компания Titan выпускает модели с фронтальным обдувом TTC-HDC2 и TTC-HDC3 с двумя и тремя вентиляторами соответственно.

Кулеры поставляются в одинаковых упаковках типа "блистер", на которых лишь наклейкой обозначено, сколько вентиляторов внутри вы найдёте:). В комплекте помимо шурупов и винтиков, вы так же найдёте стальные скобы для крепления винчестера в 5.25" отсек корпуса.

На лицевой панели кулеров установлено два или три вентилятора в зависимости от модели. Формат 5.25" отсека не позволяет устанавливать вертикально вентиляторы, большие по размерам, чем 40x40 мм. А такие вентиляторы имеют маленькую производительность - всего по 5.6 CFM каждый. Поэтому, чтобы достигнуть уровня воздушного потока, как у вентилятора на TTC-HD11, их нужно минимум три штуки. Да к тому же этим вентиляторам предстоит прогонять воздух через всю длину жёсткого диска, так что два или три вентилятора для фронтального обдува - обычное дело. Каждый из них потребляет по 0.96 Вт мощности и при частоте вращения лопастей 5000 оборотов в минуту выдаёт уровень шума не выше 23 дБ.

Вентиляторы подключены к одному разъёму питания. Отключить их можно только обрезанием проводов. А вот снимаются они легко, и в случае чего - вы сможете их поменять.

У обоих кулеров перед вентиляторами установлен фильтр, предотвращающий попадание пыли в системный блок. Этот фильтр спрятан за декоративной пластиковой решёткой. Он легко снимается для промывки.

Кулер собирается уже непосредственно в корпусе компьютера. Но жёсткий диск крепится в 5.25" отсек отдельно, а блок с вентиляторами - отдельно. Собрать винчестер с кулером в единую конструкцию не получается.

Если в подобной конструкции рассмотреть распределение воздушных потоков от вентилятора, то выяснится, что большая часть воздуха расходится прямо при столкновении с торцом винчестера, и лишь незначительная часть охлаждает электронику и верхнюю пластину банки. Для лучшего охлаждения жёсткого диска производители решили установить сверху на банку большой радиатор.

Такая конструкция была предложена ещё в 1999 году и получила название "Ultimate Hard Drive Cooler". Её особенность заключалась в том, что установленный сверху на жёсткий диск радиатор насквозь продувался фронтальными вентиляторами, а использование пружинок на креплении радиатора гарантировало равномерное соприкосновение его поверхности с банкой винчестера.

Этот кулер имеет только два вентилятора, большее число не даёт установить крепление винчестера. Он так же устанавливается в 5.25" отсек корпуса, для чего в комплекте прилагаются винтики.

Как вы можете видеть, лицевая сторона аналогична моделям TTC-HD2. Здесь тоже установлен фильтр против пыли и пластиковая решёточка.

Как видно на фотографии вверху, часть вентиляторов закрыта радиатором, в котором имеются свои воздуховоды. В модели TTC-HD82 винчестер устанавливается внутрь кулера, а затем вся конструкция инсталлируется в компьютерный корпус. Какой-либо тепловой интерфейс между радиатором и жёстким диском не предусмотрен.

Производительность и уровень шума вентиляторов здесь аналогичны характеристикам модели TTC-HD22. Вентиляторы так же не могут быть отключены, но в случае чего их можно заменить.

Ну и раз на кулере есть радиатор, то вполне уместно поставить на него ещё один вентилятор, чтобы повысить эффективность.

Titan TTC-HD88 (Alaska)

Модель Titan TTC-HD88, так же известная как "Alaska", в своей конструкции сочетает фронтальный обдув с принудительным охлаждением верхнего радиатора. На сегодня это топовая модель в линейке HDD кулеров компании Titan.

Передняя часть этого кулера аналогична HD88 и HD2, а интерес вызывает радиатор, точнее система радиаторов, поскольку их здесь не один, а целых три.

По бокам жёсткого диска крепятся два радиатора, которые в свою очередь закрепляются на основном. Боковые радиаторы и передняя часть жёсткого диска щедро обдуваются воздушным потоком, создаваемым передними двумя вентиляторами. Верхний же радиатор обдувается собственным вентилятором размерами 70x70x10 мм. Этот вентилятор заменить будет очень сложно.

Из-за особенностей конструкции винчестер не плотно прилегает к верхнему радиатору. Так что его влияние на температуру HDD минимально. Конечно, проблему можно решить, добавив в качестве термоинтерфейса пасту или теплопроводящую прокладку, но это уже задача для энтузиастов. Мы уже рассматривали этот кулер более подробно в одном из наших обзоров, если будет желание ознакомиться с ним поближе, ссылка дана в конце этой статьи.

Сравнение

Тестирование проводилось следующим образом: жёсткий диск работал в режиме простоя 30 минут для выравнивания температуры. После этого запускался тест IOMeter на 15 минут. В это время винчестер нагревался. По окончании теста ещё 15 минут жёсткий диск находился в режиме простоя и остывал. На протяжении теста каждую минуту записывались показания температуры, которые снимались программой MotherBoard Monitor со внутреннего датчика HDD. Мы будем сравнивать температуры в режиме простоя и в режиме загрузки.

Тестовая система

Процессор

Pentium 4 3.0 GHz

Жёсткий диск

Hitachi 60Gb 7200 RPM

Материнская плата

MSI 915P Combo-FR

Память

2 x 512 Mb DDR2 OCZ

Видеокарта
Температура воздуха

Сравнение кулеров.

Сравнение кулеров для жёстких дисков

Модель

Размеры кулера, мм Венти-
ляторы
Сумм.
CFM
Шум каждого
вентил.
Цена, $ Темп. в покое,
o C
Темп. при загрузке, o C
TTC-HD11 125x100x15 Один 60x10 15.03 26 3.56 30 33
TTC-HD12 125x100x15 Один 60x10 15.03 26 4.1 30 33
TTC-HD22 130x100x16 Два
60x10
30.06 26
26
5.46 30 32
TTC-HDC2 149x58x43 Два
40x20
11.2 23
23
5.25 31 35
TTC-HDC3 149x58x43 Три
40x20
16.86 23
23
23
5.66 31 35
TTC-HD82 176x149x43 Два
40x20
11.2 23
23
11.3 31 34
TTC-HD88 176x149x43 Два 40x20
Один
70x10
28.42 23
23
27
17.5 30 34
Винчестер без кулера 35 49

Как видно из таблицы, при существенной разнице в цене между кулерами, охлаждающий эффект приблизительно везде одинаков. Что же касается уровня шума, то рекордсмены по тишине - HD12 и HD11 с одним вентилятором. Громче всего шумит TTC-HDC3 с тремя вентиляторами, чуть тише - Alaska. Остальные модели - по уровню шума представляют собой нечто среднее. Хотя, если смотреть на шум, не сравнивая кулеры между собой, то все модели HDD охладителей по сравнению с кулерами для процессоров или видеокарт, шумят очень тихо, в корпусе компьютера их будет почти не слышно.

При том, что температура оказывает критическое влияние на жёсткий диск, охладить его очень просто. В обычных условиях для этого достаточно самого простого кулера, такого как TTC-HD11 или TTC-HD12. И если у вас обычный домашний компьютер, то пожалуй не стоит переплачивать за более дорогой кулер. Но если у вас винчестеры работают в тяжёлых условиях и температура в корпусе держится стабильно высокой, то имеет смысл выбирать кулер с подачей воздуха снаружи компьютера. И именно в тяжёлых условиях работы разница в стоимости между кулерами будет оправдана.

Но низкая цена на кулеры Titan и невысокий уровень шума заставляют посмотреть на охлаждение с другой стороны: даже за 3.5 доллара вы можете в два раза снизить вероятность выхода из строя винчестера. И если вспомнить, сколько проблем может доставить внезапно "полетевший" HDD, то даже 17.5 долларов не кажутся существенной платой за уверенность в сохранности данных.

Продолжаем знакомство с семействами корпусов бренда CrownMicro, и на очереди - линейка CMC-245. Эта серия тонких desktop корпусов для mini-ITX и mATX систем, которая комплектуется предустановленным ITX блоком питания...

Охлаждение жесткого диска

С появлением жестких дисков со скоростями вращения магнитных дисков 7200 оборотов в минуту пользователи на практике смогли ощутить сильное тепловыделение во время их работы. В основном, источником нагрева служат не микросхемы на плате контроллера, а система позиционирования магнитных головок и шпиндельный двигатель, находящиеся в герметичном блоке. К повышенной температуре наиболее чувствительны магнитные диски, т.к. размагничивание и, следовательно, потеря информации при нагревании происходит быстрее. Выражается это в прямой зависимости количества часов наработки на отказ.

Рисунок 2.2 - Работа SMARTHDD

Датчик температуры не был включен в обязательный минимум атрибутов SMART, вследствие чего производители стали использовать различные номера атрибутов SMART, содержащих информацию о температуре, и системы отсчета температуры (шкала Цельсия или Фаренгейта). "SMARTHDD" умеет автоматически обнаруживать различия в реализации устройств и приводить к единому формату значения температуры.

Для лучшего охлаждения жесткий диск не должен быть прижат к корпусу сверху или снизу, т.к. это затрудняет циркуляцию воздуха, необходимую для эффективного охлаждения. По этой же причине не стоит располагать переплетения проводов вблизи накопителя. Снижению температуры способствует уменьшение уровня AAM и APM. С точки зрения надежности эксплуатировать жесткий диск при температуре выше 55°C не рекомендуется. При высокой температуре необходимо установить в компьютере дополнительный вентилятор, обеспечивающий активное (принудительное) охлаждение жесткого диска. Причина, по которой пользователь может отказаться от дополнительного охлаждения - шум от некачественного вентилятора или высокая стоимость качественной системы охлаждения, хотя обычно шум от дополнительного вентилятора, особенно на фоне других вентиляторов (процессор, видео, блок питания), практически не слышен.

Варианты охлаждения

Основным методом охлаждения современных ЖД 3.5? остаётся принудительный обдув с помощью вентилятора. Другие варианты теплоотвода - пассивные радиаторы, тепловые трубки, жидкостные системы и др. - не получили распространения, хотя ряд фирм (в частности, Zalman и Scythe) в разное время предлагал подобные решения. Они были бесшумны, долговечны, но отличались громоздкостью и высокой ценой, что предопределило узкую нишу на рынке (сборка особо тихих компьютеров и т.п.).

Подбор кулера для дисков имеет свою специфику. Прежде всего, общее тепловыделение ЖД и особенно его плотность сравнительно малы, поэтому достаточно легкого ветерка, чтобы снять перегрев. Вспомним также, что оптимальная температура диска под нагрузкой составляет 35-40? (примерно на 10? выше окружающей среды) и что все его поверхности следует охлаждать равномерно.

В подобных условиях лучшим выбором станет тихоходный крупногабаритный вентилятор, дующий в торец корзины с ЖД, но не касающийся её во избежание вибраций. Именно так устроен обдув корзины в современных качественных корпусах. Вентилятор крепится к вырезу передней панели, а декоративная крышка снабжена воздухозаборниками. Вытяжка через заднюю панель, которая часто встречается в корпусах среднего класса, также достаточно эффективна (конечно, при должной герметизации остальных мест).

Практика показала, что 120-мм вентилятор способен охлаждать до пяти ЖД, так что нужды обычных пользователей покрываются полностью. Для одного-двух дисков обдув даже избыточен, так что в целях снижения шума можно уменьшить скорость вращения до 600-1000 об./мин. Не лишним будет защититься от вездесущей пыли, поставив воздушный фильтр из тонкого поролона.

Значительная часть тепла ЖД может рассеиваться на корзине, которая служит пассивным радиатором. Здесь важна толщина металла и плотный равномерный прижим боковин (качественные корпуса имеют преимущество, также хорошо себя зарекомендовало крепление ЖД шестью винтами). При эффективном теплоотводе всё шасси во время работы ощутимо нагревается. Если же диск крепится на салазках или через амортизирующие элементы (силиконовые, хуже резиновые втулки), то этот путь охлаждения практически блокируется, и вся надежда остаётся на обдув.

Ситуация осложняется, когда штатное гнездо под вентилятор отсутствует. Можно заняться моддингом, сменить корпус на более подходящий или переставить ЖД в более прохладное место. Неплохо себя зарекомендовало размещение в пятидюймовом отсеке: его габариты позволяют установить вентилятор среднего размера (40-60 мм), а крепящие диск скобы не препятствуют обдуву и конвекции. Советуем использовать готовый монтажный комплект - в продаже есть как простые, так и улучшенные модели (с виброшумоизоляцией, пассивными радиаторами, индикацией температуры).

Выпускаются также недорогие (5-10$) кулеры, крепящиеся прямо на корпус ЖД. Следует предостеречь от их использования: мало того, что высокооборотный вентилятор, или даже два, обдувает практически одну только плату, покрывая её при этом пылью, растёт риск замыканий, так ещё диску передаются все вибрации крыльчатки. Особенно они возрастают через несколько месяцев эксплуатации, когда разбалтывается некачественный подшипник скольжения (других там и не ставят). В этом состоянии кулер приносит больше вреда, чем пользы и обязателен к замене.

В заключение напомним, что все обсуждение этого раздела касалось дисков для настольных компьютеров. Ноутбучные и серверные накопители имеют свою специфику, отражающуюся и на подходе к охлаждению.

Первые потребляют всего 0.4-0.9 Вт в покое и 2-3.2 Вт при активной работе, греются сравнительно слабо и не нуждаются в особых мерах. Максимум, что встречается в ноутбуках - П-образная пластина, привинченная к боковинам для лучшего теплоотвода. Для еще более миниатюрных дисков (типоразмеры 1.8?, 1.3?, 1? и даже 0.85?) нагрев и вовсе можно не учитывать: энергопотребление у них даже в пике не превышает одного ватта.

Вторые, напротив, очень горячи из-за высокооборотного шпинделя (чаще всего 15000 об./мин) и постоянной нагрузки, и для них обязателен активный обдув. Продуманная система охлаждения в серверах включает массивные салазки и корзины, раздельные воздуховоды, дублированные вентиляторы горячей замены и т.п. Благодаря этому серверные диски работают в стабильном тепловом режиме и служат заметно дольше бытовых сородичей.

Ваш компьютер стал часто "тормозить" и намертво "виснуть"? Вы слышите странные звуки, которые напоминают скрежет металла по стеклу и эти звуки раздаются из недр вашего системного блока?

Поздравляю: у вас начались проблемы с жестким диском!
Проблемы с жесткими дисками отнюдь редкость: здесь играют роль несколько факторов. Например, время, количество включений-отключений "жести", а также температурный баланс. Особенно важен последний фактор и о нем мы поговорим.

Итак!
Чем грозит перегрев жесткого диска? Как чем? Поломкой, естественно. Нагрев корпуса диска приводит к тому, что на поверхности вращающихся "болванок" начинают происходить некоторые негативные процессы, в частности - начинает "слетать" магнитная головка. Эта магнитная головка - очень чувствительное устройство, которое изначально очень тонко настроено: головка передает и принимает информацию (файлы), которую вы и записываете на вашу "жесть".

В итоге, если головка будет подвергаться ежедневному перегреву, ваш жесткий диск очень быстро выйдет из строя. И учтите: максимально допустимая температура жесткого диска +50*С (да и то, при этой температуре "жесть" уже начинает "выёживаться"). Вот так всё просто!
Теперь рассмотрим момент охлаждения "жести". Как её можно охладить? Естественно, с помощью кулера. Хотя, если у вас много времени и сил, то можете обмахивать жесткий диск веером!

А что: очень даже эффективно. Но если с головой у вас всё в порядке, то так делать не надо: могут не правильно понять. А как же надо? Необходимо механическое охлаждение, то есть - кулер. Но бывают "форс-мажорные" обстоятельства. Например, ваш системный блок просто не приспособлен для установки дополнительного кулера, который вы бы могли поставить для охлаждения жесткого диска. Также у вас может отсутствовать дополнительный слот (розетка) для подключения разъема дополнительного кулера. А самостоятельно пытаться что-то там припаять - довольно опасное занятие.

Так что же? Так и оставить жесткий диск в состоянии постоянного перегрева? Нет, не надо. Есть выход и он настолько прост, что вы очень удивит. Смотрите сюда: блок питания оснащен внутренним и довольно мощным кулером, верно? А почему бы вам не использовать мощь этого кулера в нужном направлении, то есть для охлаждения жесткого диска?! Делается это очень просто. Снимаете блок питания с его обычного места, ставите на пол, поворачиваете его "лицом" в сторону жесткого диска. (Внимание: открывать блок питания и снимать оттуда кулер не надо - всё должно остаться целостным.

Эта информация - для "полных чайников", которые, иногда, не "догоняют" суть совета и проявляют глупую инициативу). Естественно, что далеко не каждый кулер можно просто так взять и повернуть. Но если включите мозги, то у вас все получится. Главное: обратите внимание на провода, которые могут вам помешать в повороте и направлении кулера. На самом деле эти провода - не помеха: просто они могут быть запутанны и поэтому мешают вам развернуть блок питания. Распутайте провода и выберите угол поворота БП (БП - блок питания). Как установите - не забудьте, подключить кабеля питания.

Всё, запускайте систему. Теперь поставьте руку под жесткий диск: чувствуете воздушный поток? То-то!
Как видите, всё просто и не надо ничего покупать, или паять.
Понятное дело, что для богатых пользователей эта тема будет неинтересна. Зато для более скромных - это то, что надо!
Всего вам доброго и до новых встреч!

Отказ компьютера может поставить ваш бизнес или учебный проект в тупик. Практически каждый сотрудник современной компании ведёт все свои дела на компьютерной рабочей станции. Потеря доступа к вашему компьютеру даже на час может привести к огромным потерям в ежедневных продажах и доходах. Конечно, каждый рассчитывает на то, что его компьютер будет работать без проблем всё время. Но большинство людей не осознаёт, что самым важным элементом любого ПК является не Wi-Fi, монитор или даже клавиатура, а жёсткий диск , скрытый глубоко внутри устройства. Чрезвычайно важно убедиться, что ваш жёсткий диск защищён и поддерживается на протяжении всего срока службы вашего компьютера. Если вы не сохраните его, он может выйти из строя и забрать с собой все ваши данные.

Правила охлаждения HDD-диска.

Первые компьютеры, которые когда-либо были сделаны, могли работать только при постоянной температуре, примерно комнатной. Чтобы достичь соответствующих температурных и влажностных условий и обеспечить бесперебойную работу ПК, необходимо было использовать специальные системы охлаждения. С тех пор всё кардинально изменилось. Современные компьютеры могут работать при более высоких температурах окружающей среды, выполняя миллионы вычислений в секунду больше. Методы охлаждения для современных компьютеров, которые были изобретены и испытаны за последние годы, были значительно минимизированы. У каждого из них свои преимущества и недостатки. Чтобы вы могли выбрать тот, который соответствует вашим потребностям, для начала ознакомьтесь с их особенностями.

Перегрев является одной из наиболее распространённых проблем, возникающих у пользователей с их жёсткими дисками. Важно, чтобы владельцы компьютеров понимали, что перегрев – это не просто незначительное неудобство. Исследования показывают, что горячий жёсткий диск является предвестником его отказа. Отказ жёсткого диска приводит к тому, что люди теряют все свои данные, особенно если нет соответствующей системы резервного копирования . Когда профессионал теряет все свои данные, это может нанести огромный ущерб бизнесу. Перегрев – это то, что легко определить: корпус вашего ноутбука или компьютера может быть тёплым или горячим наощупь. Некоторые из других контрольных признаков надвигающегося отказа компьютера включают в себя:

  • Значительная задержка при загрузке или медленный доступ к файлам.
  • Странные звуки – особенно громкие щелчки.
  • Вентиляторы работают дольше и громче, чем обычно.
  • Данные исчезают или становятся повреждёнными.
  • «Синий экран смерти».

Причины перегрева жёсткого диска

Заблокированный поток воздуха. Воздух должен поступать в компьютер, чтобы вентиляторы могли выполнять свою работу. Убедитесь, что ваш компьютер находится там, где ничто не препятствует попаданию воздуха в вентиляционные отверстия. Неисправные вентиляторы. Когда вентилятор загрязняется, он должен работать усерднее, чтобы поддерживать надлежащую температуру и перегревать жёсткий диск. Чистите кулеры каждые 3-6 месяцев. Пыль. Пыль не только блокирует поток воздуха, но и изолирует компоненты, которые должны охлаждаться вентиляторами. Пыль – ваш враг! Разместите свой компьютер в таком месте, где минимум пыли и которое легко содержать в чистоте.

Достоинства и недостатки

Распространённой проблемой в создании продукта, особенно в электронике, является управление температурным режимом для достижения оптимальной эффективности. Суть задачи заключается в разработке энергосберегающих микропроцессоров и печатных плат (PCB), которые не будут перегреваться. Часто пропускаемым аспектом решения проблем терморегулирования компьютера является архитектурное проектирование. Будь то частный дом, офисное здание или выделенная серверная комната, архитектурные соображения могут оказать огромное влияние на доступные решения по управлению температурным режимом. Для решения и уменьшения трудностей и неэффективности, возникающих в результате нагрева, инженеры используют различные системы охлаждения жёсткого диска для управления условиями. Эти системы можно разделить на две основные категории: с активными и пассивными методами охлаждения. Но в чём разница между ними?

Пассивное охлаждение

Преимущества пассивных методов охлаждения заключаются в энергоэффективности и более низких финансовых затратах. Пассивное охлаждение обеспечивает высокий уровень естественной конвекции и рассеивания тепла благодаря использованию теплораспределителя или теплоотвода для максимизации режимов радиационного и конвекционного теплообмена. Другими словами, пассивное охлаждение основывается на использовании воздуха, проходящего через корпус ПК и его кулеры. Пассивное управление температурой – это экономичное и энергосберегающее решение, которое опирается на радиаторы, теплораспределители, тепловые трубки или материалы теплового интерфейса (TIM) для поддержания оптимальных рабочих температур.

Активное охлаждение

Активное охлаждение, с другой стороны, относится к технологиям охлаждения, которые для улучшения теплообмена полагаются на внешнее устройство. Благодаря технологиям активного охлаждения во время конвекции скорость потока увеличивается, что резко увеличивает скорость отвода тепла. Решения для активного охлаждения включают принудительную подачу воздуха через вентилятор или нагнетатель, принудительную подачу жидкости и термоэлектрические охладители (TEC), которые можно использовать для оптимизации управления температурой жёсткого диска. Вентиляторы используются, когда естественной конвекции для отвода тепла недостаточно. Они обычно интегрированы в электронику, например в корпус компьютера, или подключены к процессорам, жёстким дискам или наборам микросхем для поддержания тепловых условий и снижения риска отказов. Основным недостатком активного управления температурным режимом является то, что он требует использования электроэнергии и, следовательно, приводит к более высоким затратам по сравнению с пассивным.

Пассивные системы охлаждения HDD

Как и в случае активного воздушного охлаждения жёсткого диска, в пассивном воздушном охлаждении используется пластина, которая имитирует большую охлаждающую поверхность детали. Но при пассивном воздушном охлаждении эта пластина в несколько раз больше, чем при активном, и это потому что в рёбрах нет вентилятора, который мог бы направлять воздух туда, куда нужно. Рёбра должны быть достаточно большими, и между ними должно быть достаточно места, чтобы можно было обеспечить естественный поток воздуха. Охлаждающие пластины могут быть очень тяжёлыми и иногда требуют фиксации поверх охлаждаемой детали, чтобы не повредить жёсткий диск или плату, а также чтобы до них доставал поток воздуха от кулера. Пассивное воздушное охлаждение является наиболее эффективным способом с точки зрения энергосбережения, поскольку для его работы фактически не требуется питания.

Этот метод имеет главный недостаток: вес. Тяжёлые и большие пластины должны быть закреплены на мелких деталях и жёстких дисках, увеличивая общий вес компьютера и уменьшая полезную площадь внутри корпуса. Кроме того, температура окружающей среды не может быть очень высокой, поскольку это сделает пассивное воздушное охлаждение неэффективным. Во многих случаях корпус компьютера имеет 1-2 вентилятора для циркуляции воздуха внутри. Надёжность системы очень высокая. Если требования к охлаждению HDD соответствуют способности этой системы, то это выбор номер один. Стоимость обслуживания составляет всего 0.

Активные системы охлаждения жёстких дисков

Вентилятор подаёт свежий воздух на охлаждающую пластину, расположенную над жёстким диском. Пластина обычно имеет плоскую поверхность, которая одной стороной касается охлаждаемой детали, а на другой располагается несколько рёбер. Эти рёбра увеличивают поверхность пластины и, следовательно, её теплообменную способность. Вентилятор делает циркуляцию более быстрой и эффективной, поскольку удаляет тепловую поверхность воздуха, которая образуется между рёбрами. Активное воздушное охлаждение винчестера является эффективным с точки зрения энергосбережения с одним основным недостатком: оно может снизить рабочую температуру детали только до температур, которые всегда выше, чем температура окружающей среды. Это может быть проблемой, когда ПК работает в жёстких условиях или рядом с ним есть другие компоненты, которые могут создавать высокие температуры во время работы.

Надёжность этих систем очень высока, потому что даже если вентилятор перестанет работать, система может действовать в течение нескольких минут в качестве пассивного воздушного охлаждения. Более того, когда вентилятор вот-вот выйдет из строя, за несколько дней он обычно издаёт странный звук, давая пользователю достаточно времени для замены. Расходы на обслуживание этой системы невелики и доступны для всех.

Водяное охлаждение

Это довольно новая тенденция в системах охлаждения корпусов ПК и жёстких дисков. Базовая система состоит из охлаждающих пластин, шлангов, через которые проходит охлаждающая жидкость, небольшого бака для охлаждающей жидкости, циркуляционного насоса и радиатора. К каждому охлаждаемому компоненту прикреплена охлаждающая пластина. Она обычно изготавливается из меди или алюминия и представляет собой пустотелую пластину с входом и выходом для охлаждающей жидкости. Циркуляционный насос будет циркулировать охлаждающую жидкость от радиатора к пластинам, затем к резервуару и обратно к радиатору. В радиаторе охлаждающая жидкость снижает температуру. В зависимости от типа радиатора, водяное охлаждение также можно разделить на активное и пассивное.

  • Пассивное водяное охлаждение: при этом методе радиатор изготавливается из длинного тонкого медного или алюминиевого шланга, который имеет ребра, изготовленные из одного и того же материала, различными способами прикреплёнными к его периметру. Когда горячая охлаждающая жидкость проходит через трубу, она охлаждается до температуры окружающей среды.
  • Активное водяное охлаждение: с помощью этого метода вода охлаждается не естественным путём, а с использованием других средств охлаждения, таких как небольшие фреоновые термоэлементы Пельтье.

В некоторых случаях охлаждающая жидкость может циркулировать естественным образом. Для этого резервуар и радиатор должны быть размещены выше, чем самая высокая охлаждающая пластина системы (то есть выше, чем HDD), шланги должны быть большего диаметра, а радиатор должен быть спроектирован так, чтобы охлаждающая жидкость могла проходить по нему свободно. В общем, водяное охлаждение может быть довольно грязным, когда в соединениях труб происходит сбой. Для работы насоса также требуется много энергии, что снижает его эффективность, но это можно обойти, если выбрать естественный поток. С другой стороны, при активном водяном охлаждении рабочая температура может быть быстро понижена до температуры окружающей среды или даже ещё меньше.

Основным недостатком является надёжность системы, поскольку сбой в работе насоса будет означать почти мгновенное повышение температуры HDD и других компонентов ПК, поэтому для повышения надёжности необходимо принять специальные меры безопасности. Кроме того, у водяного охлаждения есть технические проблемы, когда его пытаются применить к различным компонентам ПК, таким как дополнительные жёсткие диски, планки памяти, микросхемы мостов север/юг и т. д. Не все детали могут быть оснащены пластинами водяного охлаждения, что делает этот способ недоступным. Поэтому вентиляторы для циркуляции воздуха внутри корпуса в этих системах присутствуют почти всегда. Стоимость установки и сервиса иногда выше, чем в предыдущих вариантах, так как требуется регулярное техническое обслуживание насоса.

Выбор наиболее подходящего метода охлаждения жёсткого диска связан с определёнными требованиями. Потребляемая мощность, температура окружающей среды, влажность, рабочая температура и корпус деталей являются наиболее важными параметрами, которые необходимо учитывать при выборе метода охлаждения. Если вы уже сталкивались с выбором системы охлаждения для своего HDD или других компонентов ПК, поделитесь об этом с нашими читателями в комментариях под статьёй.

Сегодня в Интернете можно найти огромное количество материалов, посвященных проблемам воздушного охлаждения жестких дисков и подавления производимого ими шума. Найти можно практически все кроме последовательного систематизированного подхода к решению этой проблемы.

И решается она по-разному:

  • одни считают, что главное – охладить и обвешивают весь винчестер радиаторами, окружают мощнейшими воющими и ревущими вентиляторами, а шум считается побочным явлением, не заслуживающим внимания;
  • других раздражает подобный шум, и они пытаются каждый по своему бороться с ним, причем нередко в ущерб охлаждению;
  • а многие и вовсе не представляют последствий перегрева и не обращают внимания ни на запредельные температуры, ни, тем более, на шум.

реклама

Почему так?

Дело, скорее всего в том, что мало кто в достаточном объеме знаком с путями решения проблем как эффективного охлаждения и подавления шума производимого жестким диском (да и компьютерной системой в целом).

Такое состояние дел и обусловило появление данной статьи. Основная цель ее – оказать посильную помощь в уяснении, осмыслении и систематизации общих принципов и путей комплексного решения проблем, как охлаждения жесткого диска, так и подавления производимого им шума.

В данной статье:

  • по возможности кратко, популярно или даже вовсе аксиоматично изложены сведения и минимальные основы, необходимые для понимания рассматриваемого материала и подходов к выбору конкретных конструктивных решений;
  • приведена попытка не только анализа и классификации методов и способов воздушного охлаждения жесткого диска и снижения производимого им шума, но и анализа эффективности решений используемых в типовых устройствах охлаждения и снижения шума жестких дисков;
  • показан пример комплексного подхода к решению проблемы охлаждения и снижения шума жесткого диска, как при выборе конкретного готового устройства, так и при практической разработке и изготовлении самодельной конструкции.

Хочется надеяться, что статья будет полезной всем желающим получить наиболее сбалансированное решение по охлаждению жесткого диска, производящее минимум шума и не допускающее перегрева диска даже при экстремальных условиях эксплуатации и нагрузках. Причем как тем, кто ориентируется на готовое решение, так и тем, кто для наиболее эффективного решения задач по данной теме готов проявить смекалку в доработке готовых решений, смастерить что-нибудь свое.

реклама

Примечания

Многие используемые в статье термины в настоящее время имеют достаточно много толкований. Поэтому в таких случаях будем особо оговаривать их смысл и содержание, используемые в статье.

Для акцентирования внимания читателей используются следующие знаки:

ОСНОВЫ ОХЛАЖДЕНИЯ

Жесткий диск нагревается как элементами электроники, так и элементами электромеханики. Причем больше тепла выделяют, пожалуй, элементы механики, например, такие как катушка позиционера в банке с механикой (гермоблоке) или электродвигатель. Электроника тепла выделяет меньше, но отдельные микросхемы из-за малых размеров обычно разогреваются до большей температуры, чем гермоблок.

От повышенных температур медленно деградируют не столько электронные компоненты контроллера или поверхность пластин, сколько элементы механики. Срок службы жесткого диска сокращается. Повышенная температура губительно действует на подшипники, места соединения движущихся частей и, особенно, на головки чтения-записи. Очень же сильный нагрев может привести к немедленному отказу жесткого диска.

А каковы же должны быть рабочие температуры?

Мнений тут много, но многие сходятся к тому, что с точки зрения срока службы жесткого диска оптимальной температурой банки можно считать (35…45)°С, а рабочая температура для большинства современных микросхем согласно документации на них значительно больше и может достигать 125 °С

Конечно, если имеются уж очень сильно греющиеся чипы, то срок службы электроники может значительно сокращаться. Но это явление достаточно редкое и скорее относится к просчетам разработчиков.

Кроме того, производители дисков, как правило, ограничивают еще и скорость изменения температуры окружающей среды или скорость изменения температуры охлаждающего воздуха, что при воздушном охлаждении фактически одно и то же, значениями не более (15…20) °С/час. В документации на жесткие диски различных производителей эта скорость изменения обычно обозначается как “temperature gradient” или “перепад температур”. См., например, п. 7.2.1 Temperature and humidity или п. 2.8.2 Temperature gradient , или п. Перепад температур .

Обычно вовсе не трудно ограничить нагрев банки и микросхем электроники жесткого диска на указанных выше уровнях. А вот не превысить указанную скорость изменения температуры окружающей среды посложнее. Особенно в первые (10…15) минут после включения системного блока, когда скорость нагрева воздуха в нем весьма высока. Изменение температуры воздуха вокруг жесткого диска за такое время не должно превышать (3…5) °С. Хотя на первый взгляд это и немного "лишка". Но….

Превышение рассмотренных параметров часто проявляется там, где в угоду минимизации общих шумов системного блока необдуманно сокращается количество вентиляторов и их скорость вращения. Нередко в корпусах, у которых площадь воздухозаборников для организации охлаждения жестких дисков недостаточна или же их и вовсе нет, жесткие диски оставляют “вариться в собственном соку” вовсе не задумываясь об их охлаждении.

Вывод. В общем случае необходимо не только достойно охлаждать как банку с механикой, так и электронику диска, но и не допускать превышения температурного градиента охлаждающего воздуха. Т.е. создавать некоторое устройство или систему охлаждения, выполняющую эти (и не только) задачи.

Система – нечто целое, представляющее собой единство закономерно расположенных и находящихся во взаимной связи частей.

реклама

Как же вообще можно отобрать тепло у HDD?

Из теории известно, что количество тепла за единицу времени или тепловой поток q, отбираемый от любой охлаждаемой поверхности (чипа, жесткого диска и т.д.), описывается формулой Ньютона:

q=α*S*ΔT (1)

  • q - количество теплоты за единицу времени (единица измерения Дж/c или Вт),
  • α - коэффициент теплоотдачи, Вт/м²К,
  • S - площадь поверхности теплообмена, м²,
  • ΔT=Т-Твозд - перегрев или перепад температур между температурой охлаждаемой поверхности Т и температурой теплоносителя Твозд (температура воздуха при воздушном охлаждении), К.

Проще говоря, формула гласит, что количество тепла, отбираемое от любой охлаждаемой поверхности, прямо пропорционально:

  • разнице температур между температурой охлаждаемой поверхности и температурой воздуха;
  • площади охлаждаемой поверхности;
  • коэффициенту теплоотдачи.

реклама

Выводы:

Улучшить охлаждение винчестера (увеличить количество отводимого тепла), можно всего-то только тремя методами:

  • уменьшением температуры охлаждающего воздуха;
  • увеличением площади поверхности теплообмена;
  • увеличением коэффициента теплоотдачи.

Комбинированное использование этих методов резко повышает эффективность системы охлаждения жесткого диска.

А как это выглядит на практике?

Увеличение площади поверхности теплообмена

реклама

Площадь теплообмена обычно увеличивают с помощью радиаторов.

Из видно, что теоретически для увеличения скажем вдвое теплового потока (или, что то же самое, двукратного уменьшения перегрева), необходимо так же вдвое увеличить площадь теплообмена.

Практически же из-за того, что как свойства самих радиаторов, так и передача тепла от диска к радиатору неидеальны, требуется более чем двукратное увеличение площади теплообмена для двукратного уменьшения перегрева.

Кроме того, у HDD почти нет ровных поверхностей пригодных для установки толковых радиаторов.

реклама

Хотя вроде нет. Практически у всех жестких дисков имеется плоская поверхность, образованная тонкой жестянкой – крышкой гермоблока, на которую можно лихо приспособить солидный радиатор.

Но так как все греющиеся элементы закреплены на литом массивном основании, то отвод тепла от него по тонюсенькой жестянке с наклеенной бумажкой к радиатору сразу выглядит неперспективно. Путь же через воздух внутри банки и жестяную крышку тоже особо не прельщает.

Но выглядит это куда перспективнее, чем охлаждение через тонкую жестяную крышку. Особенно если не жалеть термопасты между радиатором и боковой поверхностью жесткого диска.

реклама

На практике отвод тепла от боковых поверхностей HDD наиболее распространен.

Можно, конечно, выровнять и отшлифовать боковые поверхности винчестера (потеря гарантии!!!). Потом установить на них вполне приличные радиаторы.

При таком раскладе охлаждение диска через боковые поверхности происходит довольно эффективно, но не оптимально:

  • улучшение теплообмена наблюдается только через боковые поверхности, общая площадь которых составляет менее 1/6 части от общей площади поверхности банки;
  • неравномерное охлаждение механики, т.к. не лучшим образом охлаждаются элементы, расположенные в середине банки вдали от радиаторов (боковых стенок);
  • без дополнительного охлаждения остается электроника (хотя? на наиболее горячие чипы так же можно, а в некоторых случаях и нужно приспособить радиаторы).

Ну, а установка еще и на нижнюю, как правило, весьма кривую поверхность множества мелких радиаторов достаточно трудоемко.

реклама

Однако в последнее время получили распространение мягкие теплопроводные прокладки. Они легко деформируются и позволяют передавать тепло от неровных поверхностей жесткого диска к радиатору.

Примером такой конструкции служит HDD кулер CoolerMaster DHC-U43 CoolDrive 3 . Его конструкция отличается от конструкций «бескорпусных» охладителей наличием алюминиевого кожуха-воздуховода. ? Он служит еще и радиатором, увеличивающим площадь теплообмена.

Для охлаждения сразу нескольких винчестеров служат устройства типа LIAN LI EX-332 HDD Mount Kit, устанавливаемые в свободные 5,25” отсеки.

Такого типа “корзины” имеют увеличенный зазор между дисками, закрыты сверху и снизу и позволяют обеспечить воздушный поток равномерно “облизывающий” практически всю площадь поверхности жестких дисков и позволяют организовать толковое охлаждение, как электроники, так и равномерное охлаждение банки с механикой.

Кроме того, такого типа “корзины” нередко оснащаются воздушными фильтрами и резиновыми амортизаторами для борьбы с шумами жестких дисков.

Формирование воздушного потока

В только что рассмотренных системах охлаждения жестких дисков вентиляционные решетки, воздухозаборники, сами жесткие диски и т.д. всегда являются препятствиями на пути движения воздушного потока, формируемого вентилятором, которому приходится создавать некоторое давление для преодоления сопротивления воздушному потоку.

Причем чем больший воздушный поток необходим для отвода тепла, и чем больше степень турбулентности этого потока, тем больше система охлаждения противодействует прохождению этого потока воздуха, тем большую работу приходится совершать вентилятору создающему этот поток. И тем более мощный требуется вентилятор для преодоления сопротивления. Соответственно растет создаваемый шум.

А поскольку сами вентиляторы (независимо от скорости вращения) формируют воздушный поток с высокой степенью турбулентности, то сопротивление системы с “нагнетающим” вентилятором на входе оказывается больше сопротивления системы с “ вытяжным” вентилятором на выходе.

В результате охлаждающие системы жестких дисков с “вытяжным” вентилятором по сравнению с системами с “нагнетающим” вентилятором имеют следующие преимущества:

  • при одинаковых оборотах одинаковых вентиляторов несколько большую величину воздушного потока и, следовательно, несколько лучшее охлаждение;
  • при одинаковом охлаждении требуются меньшие обороты одинаковых вентиляторов и, следовательно, получается меньший шум.

Толщина воздушного потока

Суммарная толщина воздушного потока с использованием “вытяжной” вентиляции в системе охлаждения HDD не должна быть слишком большой, так как слои воздуха наиболее удаленные от охлаждаемой поверхности мало участвуют в процессе охлаждения.

одной стороны, тут при неизменном расходе воздуха, чем тоньше воздушный поток, тем выше его скорость и, следовательно, лучше охлаждение диска (см. п. ). Но в этом случае с уменьшением площади поперечного сечения воздушного потока растет сопротивление воздушному потоку, требуется более мощный вентилятор, растет шум.

другой стороны, если воздух нагревается в основном вблизи поверхности жесткого диска, то средняя температура избыточно толстого воздушного потока, прошедшего через систему охлаждения винчестера, возрастет весьма незначительно, и такой воздушный поток можно будет использовать для охлаждения других компонентов системного блока. Но прокачка избыточного воздуха опять же источник избыточного шума.

Практика показала, что в большинстве случаев оптимальная толщина потока вокруг типовых 3,5” дисков составляет 8-12 миллиметров. Со стороны тонкой жестяной крышки гермоблока эта величина может быть уменьшена до 5-8 миллиметров.

Для 2,5” дисков ввиду меньшего тепловыделения толщины потоков могут быть меньше. Конкретные значения оптимальной толщины потока вокруг 2,5” дисков автор дать не может, т.к. экспериментов с такими дисками не проводил.

При использовании “нагнетающей” вентиляции воздушный поток получается с очень высокой степенью турбулентности по всему поперечному сечению, и толщина его может быть в несколько раз больше. Но опять же прокачка избыточного воздуха - источник избыточного шума.

Да, а сколько ж надо этого воздуха для охлаждения диска?

Расход воздуха

Существует простая формула, которая позволяет с достаточной точностью рассчитать поток воздуха Q в кубических футах в минуту CFM (cubic feet per minute), требуемый для отвода от винчестера тепловой мощности W в Ваттах при допустимом перегреве ΔT в градусах Цельсия:

Q = 1,76*W /ΔT (2)

Данное соотношение однозначно показывает, какой производительностью Q должна обладать система охлаждения для отвода с помощью конвективного теплообмена требуемой тепловой мощности W при заданном перегреве ΔT.

Другие виды теплообмена - теплообмен теплопроводностью (передача тепла через непосредственный контакт с корзиной или, например, стенками корпуса) и лучистый теплообмен (перенос тепла излучением) здесь во внимание не принимаются. Тем более что при наличии прокладок и шайб, специальных амортизирующих, виброизолирующих креплений или мягкого подвеса жесткого диска для уменьшения шума, вклад этих двух механизмов в процесс теплообмена становится и вовсе мизерным. Поэтому их и можно не учитывать.

Для примера прикинем значение воздушного потока, необходимого для отвода среднестатистических (7…15) Вт тепла от жесткого диска с перегревом в зависимости от поставленных задач (5..15) °С.

Расчетное значение составляет

Q = 1,76 * (7…15) / (5..15) = (1…5) CFM.

На основании найденного значения подбираются соответствующие вентиляторы, и конструируется воздушный тракт охлаждающей системы. Однако сразу надо сказать, что в правильной системе охлаждения величину воздушного потока для охлаждения одного диска может обеспечить практически любой вентилятор даже при пониженном питании.

Правда из-за худшего прогрева удаленных от охлаждаемой поверхности слоев воздуха и прокачки излишнего воздуха вовсе мимо жесткого диска, как правило, требуется несколько большее значение воздушного потока. Причем чем толще воздушный поток, тем больше прокачивается излишнего воздуха. Турбулентный поток прогревается равномернее, поэтому он экономнее ламинарного потока.

Уменьшение температуры охлаждающего воздуха

Здесь все просто.

На сколько градусов уменьшается температура охлаждающего воздуха, настолько же уменьшается температура винчестера.

Таким образом, обычные варианты с охлаждением винчестера воздухом, нагретым внутри корпуса, не являются оптимальными, хотя иногда они реализуются попроще.

Если исключить такую “экзотику”, как, например, установку системного блока в холодильник или использование зимой уличного воздуха для охлаждения, то для охлаждения винчестера оптимально воспользоваться забортным воздухом, т.е. воздухом, взятым снаружи системного блока, а не изнутри его, где воздух по определению теплее.

Системы, обеспечивающие приток свежего и холодного воздуха внутрь системного блока

Для создания притока воздуха для охлаждения диска обычно используются вентиляторы общей системы охлаждения в блоке питания, на задней или верхней стенке корпуса и т.д.

Такие решения используются сейчас во многих современных корпусах.

При “вытяжной” вентиляции, т.е. создающей в корпусе некоторое разряжение воздуха, часть воздуха засасываемого через вентиляционные отверстия направляется на жесткий диск.

При “нагнетающей” вентиляции, создающей в корпусе некоторое избыточное давление воздуха для обдува диска обязательно должен использоваться отдельный дополнительный вентилятор, расположенный перед диском.

Одновременно этот же вентилятор используется и в общей системе охлаждения для нагнетания воздуха в корпус.

Иногда используются специальные лотки-переходники для установки 3,5-дюймовых жестких дисков в 5-дюймовые отсеки корпуса.

На передней панели у них имеется вентилятор для обдува диска забортным воздухом.

Существуют такие устройства и для установки нескольких дисков .

Использование для охлаждения забортного воздуха позволяет не только автоматически выполнить требования по , но и на несколько градусов уменьшить температуру диска.

Системы, обеспечивающие передачу тепла на наружную поверхность корпуса, охлаждаемую забортным воздухом

Такие решения используются сейчас довольно редко. В основном в безвентиляторных системах охлаждения, например, в корпусе Zalman TNN500A.

Здесь винчестер имеет тепловой контакт с боковой стенкой играющей роль радиатора, охлаждаемого забортным воздухом.

Однако на практике такое решение ввиду быстрого нагрева воздуха в корпусе после включения, как правило, не позволяет выполнить требования по .

Вот что вспомнилось из того, что волей-неволей придется учитывать при разработке действительно эффективной и малошумящей системы охлаждения. Вот и поговорим о шуме.

Продолжение следует...