Что такое data mining. Data Mining — добыча данных. Интеллектуальные способности одаренных детей в связи со школьной успеваемостью

OLAP-системы предоставляют аналитику средства проверки гипотез при анализе данных, то есть основной задачей аналитика является генерация гипотез, которую он решает ее, основываясь на своих знаниях и опыте.Однако знания есть не только у человека, но и у накопленных данных, которые подвергаются анализу. Такие знания содержатся в огромной объеме информации, которую человек не в силах исследовать самостоятельно. В связи с этим существует вероятность пропустить гипотезы, которые могут принести значительную выгоду.

Для обнаружения «скрытых» знаний применяется специальные методы автоматического анализа, при помощи которых приходиться практически добывать знания из «завалов» информации. За этим направлениемзакрепился термин «добыча данных (DataMining)» или «интеллектуальный анализ данных».

Существует множество определений DataMining , которые друг друга дополняют. Вот некоторые из них.

DataMining – это процесс обнаружения в базах данных нетривиальных и практически полезных закономерностей. (BaseGroup)

DataMining – это процесс выделения, исследования и моделирования больших объемов данных для обнаружения неизвестныхдо этого структур(patters) с целью достижения преимуществ в бизнесе(SAS Institute)

DataMining – это процесс, цель которого – обнаружить новые значимые корреляции, образцыи тенденции в результате просеивания большого объема хранимых данных с использованиемметодик распознавания образцов плюс применение статистических и математических методов(GartnerGroup)

DataMining – это исследование и обнаружение «машиной»(алгоритмами, средствами искусственного интеллекта) в сырых данных скрытых знаний,котор ые ранее не были известны, нетривиальны, практически полезны, доступны для интерпрета ции человеком.(А.Баргесян «Технологии анализа данных»)

DataMining – это процесс обнаружения полезных знаний о бизнесе.(Н.М.Абдикеев «КБА»)

Свойства обнаруживаемых знаний

Рассмотрим свойства обнаруживаемых знаний.

  • Знания должны быть новые, ранее неизвестные. Затраченные усилия на открытие знаний, которые уже известны пользователю, не окупаются. Поэтому ценность представляют именно новые, ранее неизвестные знания.
  • Знания должны быть нетривиальны. Результаты анализа должны отражать неочевидные, неожиданные закономерности в данных, составляющие так называемые скрытые знания. Результаты, которые могли бы быть получены более простыми способами (например, визуальным просмотром), не оправдывают привлечение мощных методов DataMining.
  • Знания должны быть практически полезны. Найденные знания должны быть применимы, в том числе и на новых данных, с достаточно высокой степенью достоверности. Полезность заключается в том, чтобы эти знания могли принести определенную выгоду при их применении.
  • Знания должны быть доступны для понимания человеку. Найденные закономерности должны быть логически объяснимы, в противном случае существует вероятность, что они являются случайными. Кроме того, обнаруженные знания должны быть представлены в понятном для человека виде.

В DataMining для представления полученных знаний служат модели. Виды моделей зависят от методов их создания. Наиболее распространенными являются: правила, деревья решений, кластеры и математические функции.

Задачи DataMining

Напомним, что в основу технологии Data Mining положена концепция шаблонов, представляющих собой закономерности. В результате обнаружения этих, скрытых от невооруженного глаза закономерностей решаются задачи DataMining. Различным типам закономерностей, которые могут быть выражены в форме, понятной человеку, соответствуют определенные задачи DataMining.

Единого мнения относительно того, какие задачи следует относить к DataMining, нет. Большинство авторитетных источников перечисляют следующие: классификация,

кластеризация, прогнозирование, ассоциация, визуализация, анализ и обнаружение

отклонений, оценивание, анализ связей, подведение итогов.

Цель описания, которое следует ниже, - дать общее представление о задачах DataMining, сравнить некоторые из них, а также представить некоторые методы, с помощью которых эти задачи решаются. Наиболее распространенные задачи DataMining - классификация,кластеризация, ассоциация, прогнозирование и визуализация. Таким образом, задачи подразделяются по типам производимой информации, это наиболее общая классификация задач DataMining.

Классификация (Classification)

Задача разбиения множества объектов или наблюдений на априорно заданные группы, называемые классами, внутри каждой из которых они предполагаются похожими друг на друга, имеющими примерно одинаковые свойства и признаки. При этом решение получается на основе анализа значений атрибутов (признаков).

Классификация является одной из важнейших задач DataMining . Она применяется в маркетинге при оценке кредитоспособности заемщиков, определении лояльности клиентов, распознавании образов , медицинской диагностике и многих других приложениях. Если аналитику известны свойства объектов каждого класса, то когда новое наблюдение относится к определенному классу, данные свойства автоматически распространяются и на него.

Если число классов ограничено двумя, то имеет место бинарная классификация , к которой могут быть сведены многие более сложные задачи. Например, вместо определения таких степеней кредитного риска, как «Высокий», «Средний» или «Низкий», можно использовать всего две - «Выдать» или «Отказать».

Для классификации в DataMining используется множество различных моделей: нейронные сети , деревья решений , машины опорных векторов, метод k-ближайших соседей, алгоритмы покрытия и др., при построении которых применяется обучение с учителем, когда выходная переменная (метка класса ) задана для каждого наблюдения. Формально классификация производится на основе разбиения пространства признаков на области, в пределах каждой из которых многомерные векторы рассматриваются как идентичные. Иными словами, если объект попал в область пространства, ассоциированную с определенным классом, он к нему и относится.

Кластеризация (Clustering)

Краткое описание. Кластеризация является логическим продолжением идеи

классификации. Это задача более сложная, особенность кластеризации заключается в том, что классы объектов изначально не предопределены. Результатом кластеризации является разбиение объектов на группы.

Пример метода решения задачи кластеризации: обучение "без учителя" особого вида нейронных сетей - самоорганизующихся карт Кохонена.

Ассоциация (Associations)

Краткое описание. В ходе решения задачи поиска ассоциативных правил отыскиваются закономерности между связанными событиями в наборе данных.

Отличие ассоциации от двух предыдущих задач DataMining: поиск закономерностей осуществляется не на основе свойств анализируемого объекта, а между несколькими событиями, которые происходят одновременно. Наиболее известный алгоритм решения задачи поиска ассоциативных правил – алгоритм Apriori.

Последовательность (Sequence) или последовательная ассоциация (sequentialassociation)

Краткое описание. Последовательность позволяет найти временные закономерности между транзакциями. Задача последовательности подобна ассоциации, но ее целью является установление закономерностей не между одновременно наступающими событиями, а между событиями, связанными во времени (т.е. происходящими с некоторым определенным интервалом во времени). Другими словами, последовательность определяется высокой вероятностью цепочки связанных во времени событий. Фактически, ассоциация является частным случаем последовательности с временным лагом, равным нулю. Эту задачу DataMining также называют задачей нахождения последовательных шаблонов (sequentialpattern).

Правило последовательности: после события X через определенное время произойдет событие Y.

Пример. После покупки квартиры жильцы в 60% случаев в течение двух недель приобретают холодильник, а в течение двух месяцев в 50% случаев приобретается телевизор. Решение данной задачи широко применяется в маркетинге и менеджменте, например, при управлении циклом работы с клиентом (CustomerLifecycleManagement).

Регрессия, прогнозирование (Forecasting)

Краткое описание. В результате решения задачи прогнозирования на основе особенностей исторических данных оцениваются пропущенные или же будущие значения целевых численных показателей.

Для решения таких задач широко применяются методы математической статистики, нейронные сети и др.

Дополнительные задачи

Определение отклонений или выбросов (DeviationDetection) , анализ отклонений или выбросов

Краткое описание. Цель решения данной задачи - обнаружение и анализ данных, наиболее отличающихся от общего множества данных, выявление так называемых нехарактерных шаблонов.

Оценивание (Estimation)

Задача оценивания сводится к предсказанию непрерывных значений признака.

Анализ связей (LinkAnalysis)

Задача нахождения зависимостей в наборе данных.

Визуализация (Visualization, GraphMining)

В результате визуализации создается графический образ анализируемых данных. Для решения задачи визуализации используются графические методы, показывающие наличие закономерностей в данных.

Пример методов визуализации - представление данных в 2-D и 3-D измерениях.

Подведение итогов (Summarization)

Задача, цель которой - описание конкретных групп объектов из анализируемого набора данных.

Достаточно близким к вышеупомянутой классификации является подразделение задач DataMining на следующие: исследования и открытия, прогнозирования и классификации, объяснения и описания.

Автоматическое исследование и открытие (свободный поиск)

Пример задачи: обнаружение новых сегментов рынка.

Для решения данного класса задач используются методы кластерного анализа.

Прогнозирование и классификация

Пример задачи: предсказание роста объемов продаж на основе текущих значений.

Методы: регрессия, нейронные сети, генетические алгоритмы, деревья решений.

Задачи классификации и прогнозирования составляют группу так называемого индуктивного моделирования, в результате которого обеспечивается изучение анализируемого объекта или системы. В процессе решения этих задач на основе набора данных разрабатывается общая модель или гипотеза.

Объяснение и описание

Пример задачи: характеристика клиентов по демографическим данным и историям покупок.

Методы: деревья решения, системы правил, правила ассоциации, анализ связей.

Если доход клиента больше, чем 50 условных единиц, и его возраст - более 30 лет, тогда класс клиента - первый.

Сравнение кластеризации и классификации

Характеристика

Классификация

Кластеризация

Контролируемость обучения

Контролируемое

Неконтролируемое

Стратегии

Обучение с учителем

Обучение без учителя

Наличие метки класса

Обучающее множество

сопровождается меткой, указывающей

класс, к которому относится

наблюдение

Метки класса обучающего

множества неизвестны

Основание для классификации

Новые данные классифицируются на основании обучающего множества

Дано множество данных с целью

установления существования

классов или кластеров данных

Сферы применения DataMining

Следует отметить, что на сегодняшний день наибольшее распространение технология DataMining получила при решении бизнес-задач. Возможно, причина в том, что именно в этом направлении отдача от использования инструментов DataMining может составлять, по некоторым источникам, до 1000% и затраты на ее внедрение могут достаточно быстро окупиться.

Мы будем рассматривать четыре основные сферы применения технологии DataMining подробно: наука, бизнес, исследования для правительства и Web-направление.

бизнес-задач . Основные направления: банковскоедело, финансы, страхование, CRM, производство, телекоммуникации, электроннаякоммерция, маркетинг, фондовый рынок и другие.

    Выдавать ли кредит клиенту

    Сегментация рынка

    Привлечение новых клиентов

    Мошенничествос кредитными карточками

Применение DataMining для решения задач государственного уровня . Основныенаправления: поиск лиц, уклоняющихся от налогов; средства в борьбе с терроризмом.

Применение DataMining для научных исследований . Основные направления: медицина,биология, молекулярная генетика и генная инженерия, биоинформатика, астрономия,прикладная химия, исследования, касающиеся наркотической зависимости, и другие.

Применение DataMining для решения Web-задач . Основные направления: поисковыемашины (searchengines), счетчики и другие.

Электронная коммерция

В сфере электронной коммерции DataMining применяется для формирования

Такая классификация позволяет компаниям выявлять определенные группы клиентов и проводить маркетинговую политику в соответствии с обнаруженными интересами и потребностями клиентов. Технология DataMining для электронной коммерции тесно связана с технологией WebMining.

Основные задачи DataMining в промышленном производстве:

· комплексный системный анализ производственных ситуаций;

· краткосрочный и долгосрочный прогноз развития производственных ситуаций;

· выработка вариантов оптимизационных решений;

· прогнозирование качества изделия в зависимости от некоторых параметров

технологического процесса;

· обнаружение скрытых тенденций и закономерностей развития производственных

процессов;

· прогнозирование закономерностей развития производственных процессов;

· обнаружение скрытых факторов влияния;

· обнаружение и идентификация ранее неизвестных взаимосвязей между

производственными параметрами и факторами влияния;

· анализ среды взаимодействия производственных процессов и прогнозирование

изменения ее характеристик;

процессами;

· визуализацию результатов анализа, подготовку предварительных отчетов и проектов

допустимых решений с оценками достоверности и эффективности возможных реализаций.

Маркетинг

В сфере маркетинга DataMining находит очень широкое применение.

Основные вопросы маркетинга "Что продается?", "Как продается?", "Кто является

потребителем?"

В лекции, посвященной задачам классификации и кластеризации, подробно описано использование кластерного анализа для решения задач маркетинга, как, например, сегментация потребителей.

Другой распространенный набор методов для решения задач маркетинга - методы и алгоритмы поиска ассоциативных правил.

Также успешно здесь используется поиск временных закономерностей.

Розничная торговля

В сфере розничной торговли, как и в маркетинге, применяются:

· алгоритмы поиска ассоциативных правил (для определения часто встречающихся наборов

товаров, которые покупатели покупают одновременно). Выявление таких правил помогает

размещать товары на прилавках торговых залов, вырабатывать стратегии закупки товаров

и их размещения на складах и т.д.

· использование временных последовательностей, например, для определения

необходимых объемов запасов товаров на складе.

· методы классификации и кластеризации для определения групп или категорий клиентов,

знание которых способствует успешному продвижению товаров.

Фондовый рынок

Вот список задач фондового рынка, которые можно решать при помощи технологии Data

Mining:· прогнозирование будущих значений финансовых инструментов и индикаторов поих

прошлым значениям;

· прогноз тренда (будущего направления движения - рост, падение, флэт) финансового

инструмента и его силы (сильный, умеренно сильный и т.д.);

· выделение кластерной структуры рынка, отрасли, сектора по некоторому набору

характеристик;

· динамическое управление портфелем;

· прогноз волатильности;

· оценка рисков;

· предсказание наступления кризиса и прогноз его развития;

· выбор активов и др.

Кроме описанных выше сфер деятельности, технология DataMining может применяться в самых разнообразных областях бизнеса, где есть необходимость в анализе данных и накоплен некоторый объем ретроспективной информации.

Применение DataMining в CRM

Одно из наиболее перспективных направлений применения DataMining – использование данной технологии в аналитическом CRM.

CRM (CustomerRelationshipManagement) - управление отношениями с клиентами.

При совместном использовании этих технологий добыча знаний совмещается с "добычей денег" из данных о клиентах.

Важным аспектом в работе отделов маркетинга и отдела продаж является составление целостного представления о клиентах, информация об их особенностях, характеристиках, структуре клиентской базы. В CRM используется так называемое профилирование клиентов, дающее полное представление всей необходимой информации о клиентах.

Профилирование клиентов включает следующие компоненты: сегментация клиентов, прибыльность клиентов, удержание клиентов, анализ реакции клиентов. Каждый из этих компонентов может исследоваться при помощи DataMining, а анализ их в совокупности, как компонентов профилирования, в результате может дать те знания, которые из каждой отдельной характеристики получить невозможно.

WebMining

WebMining можно перевести как "добыча данных в Web". WebIntelligence или Web.

Интеллект готов "открыть новую главу" в стремительном развитии электронного бизнеса. Способность определять интересы и предпочтения каждого посетителя, наблюдая за его поведением, является серьезным и критичным преимуществом конкурентной борьбы на рынке электронной коммерции.

Системы WebMining могут ответить на многие вопросы, например, кто из посетителей является потенциальным клиентом Web-магазина, какая группа клиентов Web-магазина приносит наибольший доход, каковы интересы определенного посетителя или группы посетителей.

Методы

Классификация методов

Различают две группы методов :

  • статистические методы , основанные на использовании усредненного накопленного опыта, который отражен в ретроспективных данных;
  • кибернетические методы , включающие множество разнородных математических подходов.

Недостаток такой классификации: и статистические, и кибернетические алгоритмы тем или иным образом опираются на сопоставление статистического опыта с результатами мониторинга текущей ситуации.

Преимуществом такой классификации является ее удобство для интерпретации - она используется при описании математических средств современного подхода к извлечению знаний из массивов исходных наблюдений (оперативных и ретроспективных), т.е. в задачах Data Mining.

Рассмотрим подробнее представленные выше группы.

Статистические методы Data mining

В эти методы представляют собой четыре взаимосвязанных раздела:

  • предварительный анализ природы статистических данных (проверка гипотез стационарности, нормальности, независимости, однородности, оценка вида функции распределения, ее параметров и т.п.);
  • выявление связей и закономерностей (линейный и нелинейный регрессионный анализ, корреляционный анализ и др.);
  • многомерный статистический анализ (линейный и нелинейный дискриминантный анализ, кластерный анализ, компонентный анализ, факторный анализ и др.);
  • динамические модели и прогноз на основе временных рядов.

Арсенал статистических методов Data Mining классифицирован на четыре группы методов :

  1. Дескриптивный анализ и описание исходных данных.
  2. Анализ связей (корреляционный и регрессионный анализ, факторный анализ, дисперсионный анализ).
  3. Многомерный статистический анализ (компонентный анализ, дискриминантный анализ, многомерный регрессионный анализ, канонические корреляции и др.).
  4. Анализ временных рядов (динамические модели и прогнозирование).

Кибернетические методы Data Mining

Второе направление Data Mining - это множество подходов, объединенных идеей компьютерной математики и использования теории искусственного интеллекта.

К этой группе относятся такие методы :

  • искусственные нейронные сети (распознавание, кластеризация, прогноз);
  • эволюционное программирование (в т.ч. алгоритмы метода группового учета аргументов);
  • генетические алгоритмы (оптимизация);
  • ассоциативная память (поиск аналогов, прототипов);
  • нечеткая логика;
  • деревья решений;
  • системы обработки экспертных знаний.

Кластерный анализ

Цель кластеризации - поиск существующих структур.

Кластеризация является описательной процедурой, она не делает никаких статистических выводов, но дает возможность провести разведочный анализ и изучить "структуру данных".

Само понятие "кластер" определено неоднозначно: в каждом исследовании свои "кластеры". Переводится понятие кластер (cluster) как "скопление", "гроздь". Кластер можно охарактеризовать как группу объектов, имеющих общие свойства.

Характеристиками кластера можно назвать два признака:

  • внутренняя однородность;
  • внешняя изолированность.

Вопрос, задаваемый аналитиками при решении многих задач, состоит в том, как организовать данные в наглядные структуры, т.е. развернуть таксономии.

Наибольшее применение кластеризация первоначально получила в таких науках как биология, антропология, психология. Для решения экономических задач кластеризация длительное время мало использовалась из-за специфики экономических данных и явлений.

Кластеры могут быть непересекающимися, или эксклюзивными (non-overlapping, exclusive), и пересекающимися (overlapping) .

Следует отметить, что в результате применения различных методов кластерного анализа могут быть получены кластеры различной формы. Например, возможны кластеры "цепочного" типа, когда кластеры представлены длинными "цепочками", кластеры удлиненной формы и т.д., а некоторые методы могут создавать кластеры произвольной формы.

Различные методы могут стремиться создавать кластеры определенных размеров (например, малых или крупных) либо предполагать в наборе данных наличие кластеров различного размера. Некоторые методы кластерного анализа особенно чувствительны к шумам или выбросам, другие - менее. В результате применения различных методов кластеризации могут быть получены неодинаковые результаты, это нормально и является особенностью работы того или иного алгоритма. Данные особенности следует учитывать при выборе метода кластеризации.

Приведем краткую характеристику подходов к кластеризации.

Алгоритмы, основанные на разделении данных (Partitioningalgorithms), в т.ч. итеративные:

  • разделение объектов на k кластеров;
  • итеративное перераспределение объектов для улучшения кластеризации.
  • Иерархические алгоритмы (Hierarchyalgorithms):
  • агломерация: каждый объект первоначально является кластером, кластеры,
  • соединяясь друг с другом, формируют больший кластер и т.д.

Методы, основанные на концентрации объектов (Density-basedmethods):

  • основаны на возможности соединения объектов;
  • игнорируют шумы, нахождение кластеров произвольной формы.

Грид- методы (Grid-based methods):

  • квантование объектов в грид-структуры.

Модельные методы (Model-based):

  • использование модели для нахождения кластеров, наиболее соответствующих данным.

Методы кластерного анализа. Итеративные методы.

При большом количестве наблюдений иерархические методы кластерного анализа не пригодны. В таких случаях используют неиерархические методы, основанные на разделении, которые представляют собой итеративные методы дробления исходной совокупности. В процессе деления новые кластеры формируются до тех пор, пока не будет выполнено правило остановки.

Такая неиерархическая кластеризация состоит в разделении набора данных на определенное количество отдельных кластеров. Существует два подхода. Первый заключается в определении границ кластеров как наиболее плотных участков в многомерном пространстве исходных данных, т.е. определение кластера там, где имеется большое "сгущение точек". Второй подход заключается в минимизации меры различия объектов

Алгоритм k-средних (k-means)

Наиболее распространен среди неиерархических методов алгоритм k-средних, также называемый быстрым кластерным анализом . Полное описание алгоритма можно найти в работе Хартигана и Вонга (HartiganandWong, 1978). В отличие от иерархических методов, которые не требуют предварительных предположений относительно числа кластеров, для возможности использования этого метода необходимо иметь гипотезу о наиболее вероятном количестве кластеров.

Алгоритм k-средних строит k кластеров, расположенных на возможно больших расстояниях друг от друга. Основной тип задач, которые решает алгоритм k-средних, - наличие предположений (гипотез) относительно числа кластеров, при этом они должны быть различны настолько, насколько это возможно. Выбор числа k может базироваться на результатах предшествующих исследований, теоретических соображениях или интуиции.

Общая идея алгоритма: заданное фиксированное число k кластеров наблюдения сопоставляются кластерам так, что средние в кластере (для всех переменных) максимально возможно отличаются друг от друга.

Описание алгоритма

1. Первоначальное распределение объектов по кластерам.

  • Выбирается число k, и на первом шаге эти точки считаются "центрами" кластеров.
  • Каждому кластеру соответствует один центр.

Выбор начальныхцентроидов может осуществляться следующим образом:

  • выбор k-наблюдений для максимизации начального расстояния;
  • случайный выбор k-наблюдений;
  • выбор первых k-наблюдений.

В результате каждый объект назначен определенному кластеру.

2. Итеративный процесс.

Вычисляются центры кластеров, которыми затем и далее считаются покоординатные средние кластеров. Объекты опять перераспределяются.

Процесс вычисления центров и перераспределения объектов продолжается до тех пор, пока не выполнено одно из условий:

  • кластерные центры стабилизировались, т.е. все наблюдения принадлежат кластеру, которому принадлежали до текущей итерации;
  • число итераций равно максимальному числу итераций.

На рисунке приведен пример работы алгоритма k-средних для k, равного двум.

Пример работы алгоритма k-средних (k=2)

Выбор числа кластеров является сложным вопросом. Если нет предположений относительно этого числа, рекомендуют создать 2 кластера, затем 3, 4, 5 и т.д., сравнивая полученные результаты.

Проверка качества кластеризации

После получений результатов кластерного анализа методом k-средних следует проверить правильность кластеризации (т.е. оценить, насколько кластеры отличаются друг от друга).

Для этого рассчитываются средние значения для каждого кластера. При хорошей кластеризации должны быть получены сильно отличающиеся средние для всех измерений или хотя бы большей их части.

Достоинства алгоритма k-средних:

  • простота использования;
  • быстрота использования;
  • понятность и прозрачность алгоритма.

Недостатки алгоритма k-средних:

  • алгоритм слишком чувствителен к выбросам, которые могут искажать среднее.

Возможным решением этой проблемы является использование модификации алгоритма -алгоритм k-медианы;

  • алгоритм может медленно работать на больших базах данных. Возможным решением данной проблемы является использование выборки данных.

Байесовские сети

В теории вероятности понятие информационной зависимости моделируется посредством условной зависимости (или строго: отсутствием условной независимости), которая описывает, как наша уверенность в исходе некоего события меняется при получении нового знания о фактах, при условии, что нам был уже известен некоторый набор других фактов.

Удобно и интуитивно понятно представлять зависимости между элементами посредством направленного пути, соединяющего эти элементы в графе. Если зависимость между элементами x и y не является непосредственной и осуществляется посредством третьего элемента z, то логично ожидать, что на пути между x и y будет находиться элемент z. Такие узлы-посредники будут «отсекать» зависимость между x и y, т.е. моделировать ситуацию условной независимости между ними при известном значении непосредственных факторов влияния. Такими языками моделирования являются байесовские сети, которые служат для описания условных зависимостей между понятиями некой предметной области.

Байесовские сети - это графические структуры для представления вероятностных отношений между большим количеством переменных и для осуществления вероятностного вывода на основе этих переменных. "Наивная" (байесовская) классификация - достаточно прозрачный и понятный метод классификации."Наивной" она называется потому, что исходит из предположения о взаимной независимости признаков.

Свойства классификации:

1. Использование всех переменных и определение всех зависимостей между ними.

2. Наличие двух предположений относительно переменных:

  • все переменные являются одинаково важными;
  • все переменные являются статистически независимыми, т.е. значение однойпеременной ничего не говорит о значении другой.

Различают два основных сценария применения байесовских сетей:

1. Описательный анализ. Предметная область отображается в виде графа, узлы которого представляют понятия, а направленные дуги, отображаемые стрелками, иллюстрируют непосредственные зависимости между этими понятиями. Связь между понятиями x и y означает: знание значения x помогает сделать более обоснованное предположение о значении y. Отсутствие непосредственной связи между понятиями моделирует условную независимость между ними при известных значениях некоторого набора «разделяющих» понятий. Например, размер обуви ребенка, очевидно, связан с умением ребенка читать через возраст. Так, больший размер обуви дает большую уверенность, что ребенок уже читает, но если нам уже известен возраст, то знание размера обуви уже не даст нам дополнительной информации о способности ребенка к чтению.


В качестве другого, противоположного, примера рассмотрим такие изначально несвязанные факторы как курение и простуда. Но если нам известен симптом, например, что человек страдает по утрам кашлем, то знание того, что человек не курит, повышает нашу уверенность того, что человек простужен.

2. Классификация и прогнозирование. Байесовская сеть, допуская условную независимость ряда понятий, позволяет уменьшить число параметров совместного распределения, делая возможным их доверительную оценку на имеющихся объемах данных. Так, при 10 переменных, каждая из которых может принимать 10 значений, число параметров совместного распределения – 10 миллиардов - 1. Если допустить, что между этими переменными друг от друга зависят только 2 переменные, то число параметров становится 8*(10-1) + (10*10-1) = 171. Имея реалистичную по вычислительным ресурсам модель совместного распределения, неизвестное значение какого-либо понятия мы можем прогнозировать как, например, наиболее вероятное значение этого понятия при известных значениях других понятий.

Отмечают такие достоинства байесовских сетей как метода DataMining:

В модели определяются зависимости между всеми переменными, это позволяет легко обрабатывать ситуации, в которых значения некоторых переменных неизвестны;

Байесовские сети достаточно просто интерпретируются и позволяют на этапе прогностического моделирования легко проводить анализ по сценарию "что, если";

Байесовский метод позволяет естественным образом совмещать закономерности, выведенные из данных, и, например, экспертные знания, полученные в явном виде;

Использование байесовских сетей позволяет избежать проблемы переучивания (overfitting), то есть избыточного усложнения модели, что является слабой стороной многих методов (например, деревьев решений и нейронных сетей).

Наивно-байесовский подход имеет следующие недостатки:

Перемножать условные вероятности корректно только тогда, когда все входные переменные действительно статистически независимы; хотя часто данный метод показывает достаточно хорошие результаты при несоблюдении условия статистической независимости, но теоретически такая ситуация должна обрабатываться более сложными методами, основанными на обучении байесовских сетей;

Невозможна непосредственная обработка непрерывных переменных - требуется их преобразование к интервальной шкале, чтобы атрибуты были дискретными; однако такие преобразования иногда могут приводить к потере значимых закономерностей;

На результат классификации в наивно-байесовском подходе влияют только индивидуальные значения входных переменных, комбинированное влияние пар или троек значений разных атрибутов здесь не учитывается. Это могло бы улучшить качество классификационной модели с точки зрения ее прогнозирующей точности, однако,увеличило бы количество проверяемых вариантов.

Искусственные нейронные сети

Искуственные нейронные сети(далее нейронные сети) могут быть синхронные и асинхронные. В синхронных нейронных сетях в каждый момент времени свое состояние меняет лишь один нейрон. В асинхронных - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Можно выделить две базовые архитектуры - слоистые и полносвязные сети. Ключевым в слоистых сетях является понятие слоя. Слой - один или несколько нейронов, на входы которых подается один и тот же общий сигнал. Слоистые нейронные сети - нейронные сети, в которых нейроны разбиты на отдельные группы (слои) так, что обработка информации осуществляется послойно. В слоистых сетях нейроны i-го слоя получают входные сигналы, преобразуют их и через точки ветвления передают нейронам (i+1) слоя. И так до k-го слоя, который выдает выходные сигналы для интерпретатора и пользователя. Число нейронов в каждом слое не связано с количеством нейронов в других слоях, может быть произвольным. В рамках одного слоя данные обрабатываются параллельно, а в масштабах всей сети обработка ведется последовательно - от слоя к слою. К слоистым нейронным сетям относятся, например, многослойные персептроны, сети радиальных базисных функций, когнитрон, некогнитрон, сети ассоциативной памяти. Однако сигнал не всегда подается на все нейроны слоя. В когнитроне, например, каждый нейрон текущего слоя получает сигналы только от близких ему нейронов предыдущего слоя.

Слоистые сети, в свою очередь, могут быть однослойными и многослойными.

Однослойная сеть - сеть, состоящая из одного слоя.

Многослойная сеть - сеть, имеющая несколько слоев.

В многослойной сети первый слой называется входным, последующие - внутренними или скрытыми, последний слой - выходным. Таким образом, промежуточные слои - это все слои в многослойной нейронной сети, кроме входного и выходного. Входной слой сети реализует связь с входными данными, выходной - с выходными. Таким образом, нейроны могут быть входными, выходными и скрытыми. Входной слой организован из входных нейронов (inputneuron), которые получают данные и распространяют их на входы нейронов скрытого слоя сети. Скрытый нейрон (hiddenneuron) - это нейрон, находящийся в скрытом слое нейронной сети. Выходные нейроны (outputneuron), из которых организован выходной слой сети, выдает результаты работы нейронной сети.

В полносвязных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, включая самого себя. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

Все входные сигналы подаются всем нейронам.

Обучение нейронных сетей

Перед использованием нейронной сети ее необходимо обучить. Процесс обучения нейронной сети заключается в подстройке ее внутренних параметров под конкретную задачу. Алгоритм работы нейронной сети является итеративным, его шаги называют эпохами или циклами. Эпоха - одна итерация в процессе обучения, включающая предъявление всех примеров из обучающего множества и, возможно, проверку качества обучения на контрольном множестве. Процесс обучения осуществляется на обучающей выборке. Обучающая выборка включает входные значения и соответствующие им выходные значения набора данных. В ходе обучения нейронная сеть находит некие зависимости выходных полей от входных. Таким образом, перед нами ставится вопрос - какие входные поля (признаки) нам необходимо использовать. Первоначально выбор осуществляется эвристически, далее количество входов может быть изменено.

Сложность может вызвать вопрос о количестве наблюдений в наборе данных. И хотя существуют некие правила, описывающие связь между необходимым количеством наблюдений и размером сети, их верность не доказана. Количество необходимых наблюдений зависит от сложности решаемой задачи. При увеличении количества признаков количество наблюдений возрастает нелинейно, эта проблема носит название "проклятие размерности". При недостаточном количестве данных рекомендуется использовать линейную модель.

Аналитик должен определить количество слоев в сети и количество нейронов в каждом слое. Далее необходимо назначить такие значения весов и смещений, которые смогут минимизировать ошибку решения. Веса и смещения автоматически настраиваются таким образом, чтобы минимизировать разность между желаемым и полученным на выходе сигналами, которая называется ошибка обучения. Ошибка обучения для построенной нейронной сети вычисляется путем сравнения выходных и целевых (желаемых) значений. Из полученных разностей формируется функция ошибок.

Функция ошибок - это целевая функция, требующая минимизации в процессе управляемого обучения нейронной сети. С помощью функции ошибок можно оценить качество работы нейронной сети во время обучения. Например, часто используется сумма квадратов ошибок. От качества обучения нейронной сети зависит ее способность решать поставленные передтней задачи.

Переобучение нейронной сети

При обучении нейронных сетей часто возникает серьезная трудность, называемая проблемой переобучения (overfitting). Переобучение, или чрезмерно близкая подгонка - излишне точное соответствие нейронной сети конкретному набору обучающих примеров, при котором сеть теряет способность к обобщению. Переобучение возникает в случае слишком долгого обучения, недостаточного числа обучающих примеров или переусложненной структуры нейронной сети. Переобучение связано с тем, что выбор обучающего (тренировочного) множества является случайным. С первых шагов обучения происходит уменьшение ошибки. На последующих шагах с целью уменьшения ошибки (целевой функции) параметры подстраиваются под особенности обучающего множества. Однако при этом происходит "подстройка" не под общие закономерности ряда, а под особенности его части - обучающего подмножества. При этом точность прогноза уменьшается. Один из вариантов борьбы с переобучением сети - деление обучающей выборки на два множества (обучающее и тестовое). На обучающем множестве происходит обучение нейронной сети. На тестовом множестве осуществляется проверка построенной модели. Эти множества не должны пересекаться. С каждым шагом параметры модели изменяются, однако постоянное уменьшение значения целевой функции происходит именно на обучающем множестве. При разбиении множества на два мы можем наблюдать изменение ошибки прогноза на тестовом множестве параллельно с наблюдениями над обучающим множеством. Какое-то количество шагов ошибки прогноза уменьшается на обоих множествах. Однако на определенном шаге ошибка на тестовом множестве начинает возрастать, при этом ошибка на обучающем множестве продолжает уменьшаться. Этот момент считается началом переобучения

Инструменты DataMining

Разработкой в секторе DataMining всемирного рынка программного обеспечения заняты как всемирно известные лидеры, так и новые развивающиеся компании. Инструменты DataMining могут быть представлены либо как самостоятельное приложение, либо как дополнения к основному продукту. Последний вариант реализуется многими лидерами рынка программного обеспечения. Так, уже стало традицией, что разработчики универсальных статистических пакетов, вдополнение к традиционным методам статистического анализа, включают в пакет определенныйнаборметодов DataMining. Этотакиепакетыкак SPSS (SPSS, Clementine), Statistica (StatSoft), SAS Institute (SAS Enterprise Miner). Некоторые разработчики OLAP- решений также предлагают набор методов DataMining, например, семейство продуктов Cognos. Есть поставщики, включающие DataMining решения в функциональность СУБД: это Microsoft (MicrosoftSQLServer ), Oracle , IBM (IBMIntelligentMinerforData ).

Список литературы

  1. Абдикеев Н.М. Данько Т.П. Ильдеменов С.В. Киселев А.Д, «Реинжиниринг бизнес-процессов. Курс MBA», М.: Изд-во Эксмо, 2005. - 592 с. - (МВА)
  1. Абдикеев Н.М., Киселев А.Д. «Управление знаниями в корпорации и реинжиниринг бизнеса» - М.:Инфра-М, 2011.- 382 с. – ISBN 978-5-16-004300-5
  1. Барсегян А.А., Куприянов М.С., Степаненко В.В., ХолодИ.И. «Методы и модели анализа данных: OLAP и Data Mining», Спб:БХВ-Петербург,2004,336с., ISBN 5-94157-522-Х
  1. Дюк В ., Самойленко А ., «Data Mining. Учебный курс» Спб:Питер,2001, 386с.
  1. Чубукова И.А., Курс Data Mining, http://www.intuit.ru/department/database/datamining/
  1. IanH. Witten, Eibe Frank, Mark A. Hall, Morgan Kaufmann, Data Mining: Practical Machine Learning Tools and Techniques (Third Edition), ISBN 978-0-12-374856-0
  1. Petrushin V.A. , Khan L. , Multimedia Data Mining and Knowledge Discovery

В настоящее время элементы искусственного интеллекта активно внедряются в практическую деятельность менеджера. В отличие от традиционных систем искусственного интеллекта, технология интеллектуального поиска и анализа данных или "добыча данных" (Data Mining - DM), не пытается моделировать естественный интеллект, а усиливает его возможности мощностью современных вычислительных серверов, поисковых систем и хранилищ данных. Нередко рядом со словами "Data Mining" встречаются слова "обнаружение знаний в базах данных" (Knowledge Discovery in Databases).

Рис. 6.17.

Data Mining - это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Data Mining представляют большую ценность для руководителей и аналитиков в их повседневной деятельности. Деловые люди осознали, что с помощью методов Data Mining они могут получить ощутимые преимущества в конкурентной борьбе.

В основу современной технологии Data Mining (Discovery-driven Data Mining) положена концепция шаблонов (Patterns), отражающих фрагменты многоаспектных взаимоотношений в данных. Эти шаблоны представляют собой закономерности, свойственные выборкам данных, которые могут быть компактно выражены в понятной человеку форме. Поиск шаблонов производится методами, не ограниченными рамками априорных предположений о структуре выборки и виде распределений значений анализируемых показателей. На рис. 6.17 показана схема преобразования данных с использованием технологии Data Mining.

Рис. 6.18.

Основой для всевозможных систем прогнозирования служит историческая информация, хранящаяся в БД в виде временных рядов. Если удается построить шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать и поведение системы в будущем. На рис. 6.18 показан полный цикл применения технологии Data Mining.

Важное положение Data Mining - нетривиальность разыскиваемых шаблонов. Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные (Unexpected) регулярности в данных, составляющие так называемые скрытые знания (Hidden Knowledge). К деловым людям пришло понимание, что "сырые" данные (Raw Data) содержат глубинный пласт знаний, и при грамотной его раскопке могут быть обнаружены настоящие самородки, которые можно использовать в конкурентной борьбе.

Сфера применения Data Mining ничем не ограничена - технологию можно применять всюду, где имеются огромные количества каких-либо "сырых" данных!


В первую очередь методы Data Mining заинтересовали коммерческие предприятия, развертывающие проекты на основе информационных хранилищ данных (Data Warehousing). Опыт многих таких предприятий показывает, что отдача от использования Data Mining может достигать 1000%. Известны сообщения об экономическом эффекте, в 10-70 раз превысившем первоначальные затраты от 350 до 750 тыс. долларов. Есть сведения о проекте в 20 млн долларов, который окупился всего за 4 месяца. Другой пример - годовая экономия 700 тыс. долларов за счет внедрения Data Mining в одной из сетей универсамов в Великобритании.

Компания Microsoft официально объявила об усилении своей активности в области Data Mining. Специальная исследовательская группа Microsoft, возглавляемая Усамой Файядом, и шесть приглашенных партнеров (компании Angoss, Datasage, Epiphany, SAS, Silicon Graphics, SPSS) готовят совместный проект по разработке стандарта обмена данными и средств для интеграции инструментов Data Mining с базами и хранилищами данных.

Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. (рис. 6.19). Отсюда обилие методов и алгоритмов, реализованных в различных действующих системах Data Mining. [Дюк В.А. www.inftech.webservis.ru/it/datamining/ar2.html]. Многие из таких систем интегрируют в себе сразу несколько подходов. Тем не менее, как правило, в каждой системе имеется какая-то ключевая компонента, на которую делается главная ставка.

Можно назвать пять стандартных типов закономерностей, выявляемых с помощью методов Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование.

Рис. 6.19. Области применения технологии Data Mining

Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Например, исследование, проведенное в компьютерном супермаркете, может показать, что 55% купивших компьютер берут также и принтер или сканер, а при наличии скидки за такой комплект принтер приобретают в 80% случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка.

Если существует цепочка связанных во времени событий, то говорят о последовательности. Так, например, после покупки дома в 45% случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60% новоселов обзаводятся холодильником.

С помощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил.

Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства Data Mining самостоятельно выделяют различные однородные группы данных.

Что такое Data Mining

орпоративная база данных любого современного предприятия обычно содержит набор таблиц, хранящих записи о тех или иных фактах либо объектах (например, о товарах, их продажах, клиентах, счетах). Как правило, каждая запись в подобной таблице описывает какой-то конкретный объект или факт. Например, запись в таблице продаж отражает тот факт, что такой-то товар продан такому-то клиенту тогда-то таким-то менеджером, и по большому счету ничего, кроме этих сведений, не содержит. Однако совокупность большого количества таких записей, накопленных за несколько лет, может стать источником дополнительной, гораздо более ценной информации, которую нельзя получить на основе одной конкретной записи, а именно - сведений о закономерностях, тенденциях или взаимозависимостях между какими-либо данными. Примерами подобной информации являются сведения о том, как зависят продажи определенного товара от дня недели, времени суток или времени года, какие категории покупателей чаще всего приобретают тот или иной товар, какая часть покупателей одного конкретного товара приобретает другой конкретный товар, какая категория клиентов чаще всего вовремя не отдает предоставленный кредит.

Подобного рода информация обычно используется при прогнозировании, стратегическом планировании, анализе рисков, и ценность ее для предприятия очень высока. Видимо, поэтому процесс ее поиска и получил название Data Mining (mining по-английски означает «добыча полезных ископаемых», а поиск закономерностей в огромном наборе фактических данных действительно сродни этому). Термин Data Mining обозначает не столько конкретную технологию, сколько сам процесс поиска корреляций, тенденций, взаимосвязей и закономерностей посредством различных математических и статистических алгоритмов: кластеризации, создания субвыборок, регрессионного и корреляционного анализа. Цель этого поиска - представить данные в виде, четко отражающем бизнес-процессы, а также построить модель, при помощи которой можно прогнозировать процессы, критичные для планирования бизнеса (например, динамику спроса на те или иные товары или услуги либо зависимость их приобретения от каких-то характеристик потребителя).

Отметим, что традиционная математическая статистика, долгое время остававшаяся основным инструментом анализа данных, равно как и средства оперативной аналитической обработки данных (online analytical processing, OLAP), о которых мы уже неоднократно писали (см. материалы на эту тему на нашем компакт-диске), не всегда могут успешно применяться для решения таких задач. Обычно статистические методы и OLAP используются для проверки заранее сформулированных гипотез. Однако нередко именно формулировка гипотезы оказывается самой сложной задачей при реализации бизнес-анализа для последующего принятия решений, поскольку далеко не все закономерности в данных очевидны с первого взгляда.

В основу современной технологии Data Mining положена концепция шаблонов, отражающих закономерности, свойственные подвыборкам данных. Поиск шаблонов производится методами, не использующими никаких априорных предположений об этих подвыборках. Если при статистическом анализе или при применении OLAP обычно формулируются вопросы типа «Каково среднее число неоплаченных счетов заказчиками данной услуги?», то применение Data Mining, как правило, то подразумевает ответы на вопросы типа «Существует ли типичная категория клиентов, не оплачивающих счета?». При этом именно ответ на второй вопрос нередко обеспечивает более нетривиальный подход к маркетинговой политике и к организации работы с клиентами.

Важной особенностью Data Mining является нестандартность и неочевидность разыскиваемых шаблонов. Иными словами, средства Data Mining отличаются от инструментов статистической обработки данных и средств OLAP тем, что вместо проверки заранее предполагаемых пользователями взаимозависимостей они на основании имеющихся данных способны находить такие взаимозависимости самостоятельно и строить гипотезы об их характере.

Следует отметить, что применение средств Data Mining не исключает использования статистических инструментов и OLAP-средств, поскольку результаты обработки данных с помощью последних, как правило, способствуют лучшему пониманию характера закономерностей, которые следует искать.

Исходные данные для Data Mining

ППрименение Data Mining оправданно при наличии достаточно большого количества данных, в идеале - содержащихся в корректно спроектированном хранилище данных (собственно, сами хранилища данных обычно создаются для решения задач анализа и прогнозирования, связанных с поддержкой принятия решений). О принципах построения хранилищ данных мы также неоднократно писали; соответствующие материалы можно найти на нашем компакт-диске, поэтому на этом вопросе мы останавливаться не будем. Напомним лишь, что данные в хранилище представляют собой пополняемый набор, единый для всего предприятия и позволяющий восстановить картину его деятельности на любой момент времени. Отметим также, что структура данных хранилища проектируется таким образом, чтобы выполнение запросов к нему осуществлялось максимально эффективно. Впрочем, существуют средства Data Mining, способные выполнять поиск закономерностей, корреляций и тенденций не только в хранилищах данных, но и в OLAP-кубах, то есть в наборах предварительно обработанных статистических данных.

Типы закономерностей, выявляемых методами Data Mining

огласно В.А.Дюку , выделяют пять стандартных типов закономерностей, выявляемых методами Data Mining:

Ассоциация - высокая вероятность связи событий друг с другом (например, один товар часто приобретается вместе с другим);

Последовательность - высокая вероятность цепочки связанных во времени событий (например, в течение определенного срока после приобретения одного товара будет с высокой степенью вероятности приобретен другой);

Классификация - имеются признаки, характеризующие группу, к которой принадлежит то или иное событие или объект (обычно при этом на основании анализа уже классифицированных событий формулируются некие правила);

Кластеризация - закономерность, сходная с классификацией и отличающаяся от нее тем, что сами группы при этом не заданы - они выявляются автоматически в процессе обработки данных;

Временные закономерности - наличие шаблонов в динамике поведения тех или иных данных (типичный пример - сезонные колебания спроса на те или иные товары либо услуги), используемых для прогнозирования.

Методы исследования данных в Data Mining

егодня существует довольно большое количество разнообразных методов исследования данных. Основываясь на вышеуказанной классификации, предложенной В.А.Дюком, среди них можно выделить:

Регрессионный, дисперсионный и корреляционный анализ (реализован в большинстве современных статистических пакетов, в частности в продуктах компаний SAS Institute, StatSoft и др.);

Методы анализа в конкретной предметной области, базирующиеся на эмпирических моделях (часто применяются, например, в недорогих средствах финансового анализа);

Нейросетевые алгоритмы, идея которых основана на аналогии с функционированием нервной ткани и заключается в том, что исходные параметры рассматриваются как сигналы, преобразующиеся в соответствии с имеющимися связями между «нейронами», а в качестве ответа, являющегося результатом анализа, рассматривается отклик всей сети на исходные данные. Связи в этом случае создаются с помощью так называемого обучения сети посредством выборки большого объема, содержащей как исходные данные, так и правильные ответы;

Алгоритмы - выбор близкого аналога исходных данных из уже имеющихся исторических данных. Называются также методом «ближайшего соседа»;

Деревья решений - иерархическая структура, базирующаяся на наборе вопросов, подразумевающих ответ «Да» или «Нет»; несмотря на то, что данный способ обработки данных далеко не всегда идеально находит существующие закономерности, он довольно часто используется в системах прогнозирования в силу наглядности получаемого ответа;

Кластерные модели (иногда также называемые моделями сегментации) применяются для объединения сходных событий в группы на основании сходных значений нескольких полей в наборе данных; также весьма популярны при создании систем прогнозирования;

Алгоритмы ограниченного перебора, вычисляющие частоты комбинаций простых логических событий в подгруппах данных;

Эволюционное программирование - поиск и генерация алгоритма, выражающего взаимозависимость данных, на основании изначально заданного алгоритма, модифицируемого в процессе поиска; иногда поиск взаимозависимостей осуществляется среди каких-либо определенных видов функций (например, полиномов).

Подробнее об этих и других алгоритмах Data Mining, а также о реализующих их средствах можно прочесть в книге «Data Mining: учебный курс» В.А.Дюка и А.П.Самойленко, выпущенной издательством «Питер» в 2001 году . Сегодня это одна из немногих книг на русском языке, посвященная данной проблеме.

Ведущие производители средств Data Mining

редства Data Mining, как и большинство средств Business Intelligence, традиционно относятся к дорогостоящим программным инструментам - цена некоторых из них доходит до нескольких десятков тысяч долларов. Поэтому до недавнего времени основными потребителями этой технологии были банки, финансовые и страховые компании, крупные торговые предприятия, а основными задачами, требующими применения Data Mining, считались оценка кредитных и страховых рисков и выработка маркетинговой политики, тарифных планов и иных принципов работы с клиентами. В последние годы ситуация претерпела определенные изменения: на рынке программного обеспечения появились относительно недорогие инструменты Data Mining от нескольких производителей, что сделало доступной эту технологию для предприятий малого и среднего бизнеса, ранее о ней и не помышлявших.

К современным средствам Business Intelligence относятся генераторы отчетов, средства аналитической обработки данных, средства разработки BI-решений (BI Platforms) и так называемые Enterprise BI Suites - средства анализа и обработки данных масштаба предприятия, которые позволяют осуществлять комплекс действий, связанных с анализом данных и с созданием отчетов, и нередко включают интегрированный набор BI-инструментов и средства разработки BI-приложений. Последние, как правило, содержат в своем составе и средства построения отчетов, и OLAP-средства, а нередко - и Data Mining-средства.

По данным аналитиков Gartner Group, лидерами на рынке средств анализа и обработки данных масштаба предприятия являются компании Business Objects, Cognos, Information Builders, а претендуют на лидерство также Microsoft и Oracle (рис. 1). Что касается средств разработки BI-решений, то основными претендентами на лидерство в этой области являются компании Microsoft и SAS Institute (рис. 2).

Отметим, что средства Business Intelligence компании Microsoft относятся к сравнительно недорогим продуктам, доступным широкому кругу компаний. Именно поэтому мы и собираемся рассмотреть некоторые практические аспекты применения Data Mining на примере продуктов этой компании в последующих частях данной статьи.

Литература:

1. Дюк В.А. Data Mining - интеллектуальный анализ данных. - http://www.olap.ru/basic/dm2.asp .

2. Дюк В.А., Самойленко А.П. Data Mining: учебный курс. - СПб.: Питер, 2001.

3. B. de Ville. Microsoft Data Mining. Digital Press, 2001.

Средства Data Mining

В настоящее время технология Data Mining представлена целым рядом ком­мерческих и свободно распространяемых программных продуктов. Доста­точно полный и регулярно обновляемый список этих продуктов можно найти на сайте www . kdnuggets . com , посвященном Data Mining. Классифицировать программные продукты Data Mining можно по тем же принципам, что поло­жены в основу классификации самой технологии. Однако подобная класси­фикация не будет иметь практической ценности. Вследствие высокой конку­ренции на рынке и стремления к полноте технических решений многие из продуктов Data Mining охватывают буквально все аспекты применения ана­литических технологий. Поэтому целесообразнее классифицировать продук­ты Data Mining по тому, каким образом они реализованы и, соответственно, какой потенциал для интеграции они предоставляют. Очевидно, что и это ус­ловность, поскольку такой критерий не позволяет очертить четкие границы между продуктами. Однако у подобной классификации есть одно несомнен­ное преимущество. Она позволяет быстро принять решение о выборе того или иного готового решения при инициализации проектов в области анализа данных, разработки систем поддержки принятия решений, создания храни­лищ данных и т. д.

Итак, продукты Data Mining условно можно разделить на три больших кате­гории:

    входящие, как неотъемлемая часть, в системы управления базами данных;

    библиотеки алгоритмов Data Mining с сопутствующей инфраструктурой;

    коробочные или настольные решения ("черные ящики").

Продукты первых двух категорий предоставляют наибольшие возможности для интеграции и позволяют реализовать аналитический потенциал практиче­ски в любом приложении в любой области. Коробочные приложения, в свою очередь, могут предоставлять некоторые уникальные достижения в области Data Mining или быть специализированными для какой-либо конкретной сфе­ры применения. Однако в большинстве случаев их проблематично интегри­ровать в более широкие решения.

Включение аналитических возможностей в состав коммерческих систем управления базами данных является закономерной и имеющей огромный по­тенциал тенденцией. Действительно, где, как ни в местах концентрации дан­ных, имеет наибольший смысл размещать средства их обработки. Исходя из этого принципа, функциональность Data Mining в настоящий момент реали­зована в следующих коммерческих базах данных:

    Microsoft SQL Server;

Основные тезисы

  • Интеллектуальный анализ данных позволяет автоматически, основываясь на большом количестве накопленных данных, генерировать гипотезы, ко­торые могут быть проверены другими средствами анализа (например. OLAP).

    Data Mining- исследование и обнаружение машиной (алгоритмами, средствами искусственного интеллекта) в сырых данных скрытых знаний, которые ранее не были известны, нетривиальны, практически полезны и доступны для интерпретации человеком.

    Методами Data Mining решаются три основные задачи: задача классифи­кации и регрессии, задача поиска ассоциативных правил и задача класте­ризации. По назначению они делятся на описательные и предсказатель­ные. По способам решения задачи разделяют на supervised learning (обуче­ние с учителем) и unsupervised learning (обучение без учителя).

    Задача классификации и регрессии сводится к определению значения за­висимой переменной объекта по его независимым переменным. Если зависимая переменная принимает численные значения, то говорят о задаче регрессии, в противном случае - о задаче классификации.

    При поиске ассоциативных правил целью является нахождение частых зависимостей (или ассоциаций) между объектами или событиями. Най­денные зависимости представляются в виде правил и могут быть исполь­зованы как для лучшего понимания природы анализируемых данных, так и для предсказания событий.

    Задача кластеризации заключается в поиске независимых групп (класте­ров) и их характеристик во всем множестве анализируемых данных. Реше­ние этой задачи помогает лучше понять данные. Кроме того, группировка однородных объектов позволяет сократить их число, а следовательно, и облегчить анализ.

    Методы Data Mining находятся на стыке разных направлений информаци­онных технологий: статистики, нейронных сетей, нечетких множеств, ге­нетических алгоритмов и др.

    Интеллектуальный анализ включает в себя следующие этапы: понимание и формулировка задачи анализа, подготовка данных для автоматизирован­ного анализа, применение методов Data Mining и построение моделей, проверка построенных моделей, интерпретация моделей человеком.

    Перед применением методов Data Mining исходные данные должны быть преобразованы. Вид преобразований зависит от применяемых методов.

    Методы Data Mining могут эффективно использоваться в различных об­ластях человеческой деятельности: в бизнесе, медицине, науке, телеком­муникациях и т. д.

3. Анализ текстовой информации - Text Mining

Анализ структурированной информации, хранящейся в базах данных, требует предварительной обработки: проектирования БД, ввод информации по опре­деленным правилам, размещение ее в специальных структурах (например, реляционных таблицах) и т. п. Таким образом, непосредственно для анализа этой информации и получения из нее новых знаний необходимо затратить дополнительные усилия. При этом они не всегда связаны с анализом и не обязательно приводят к желаемому результату. Из-за этого КПД анализа структурированной информации снижается. Кроме того, не все виды данных можно структурировать без потери полезной информации. Например, тексто­вые документы практически невозможно преобразовать в табличное пред­ставление без потери семантики текста и отношений между сущностями. По этой причине такие документы хранятся в БД без преобразований, как тек­стовые поля (BLOB-поля). В го же время в тексте скрыто огромное количест­во информации, но ее неструктурированность не позволяет использовать ал­горитмы Data Mining. Решением этой проблемы занимаются методы анализа неструктурированного текста. В западной литературе такой анализ называют Text Mining.

Методы анализа в неструктурированных текстах лежат на стыке нескольких областей: Data Mining, обработка естественных языков, поиск информации, извлечение информации и управление знаниями.

Определение Text Mining: Обнаружение знаний в тексте - это нетривиальный процесс обнаружения действительно новых, потенциально полезных и понятных шаблонов в неструктурированных текстовых данных.

Как видно, от определения Data Mining оно отличается только новым поняти­ем "неструктурированные текстовые данные". Под такими знаниями понима­ется набор документов, представляющих собой логически объединенный текст без каких-либо ограничений на его структуру. Примерами таких доку­ментов являются: web-страницы, электронная почта, нормативные документы ит. п. В общем случае такие документы могут быть сложными и большими и включать в себя не только текст, но и графическую информацию. Документы, использующие язык расширяемой разметки XML (extensible Markup Lan­guage), стандартный язык обобщенной разметки SGML (Standard Generalised Markup Language) и другие подобные соглашения по структуре формирова­ния текста, принято называть полуструктурированными документами. Они также могут быть обработаны методами Text Mining.

Процесс анализа текстовых документов можно представить как последова­тельность нескольких шагов

    Поиск информации. На первом шаге необходимо идентифицировать, какие документы должны быть подвергнуты анализу, и обеспечить их доступ­ность. Как правило, пользователи могут определить набор анализируемых документов самостоятельно - вручную, но при большом количестве до­кументов необходимо использовать варианты автоматизированного отбо­ра по заданным критериям.

    Предварительная обработка документов. На этом шаге выполняются простейшие, но необходимые преобразования с документами для пред­ставления их в виде, с которым работают методы Text Mining. Целью та­ких преобразований является удаление лишних слов и придание тексту более строгой формы. Подробнее методы предварительной обработки бу­дут описаны в разд.

    Извлечение информации. Извлечение информации из выбранных докумен­тов предполагает выделение в них ключевых понятий, над которыми в дальнейшем будет выполняться анализ.

Применение методов Text Mining. На данном шаге извлекаются шаблоны и отношения, имеющиеся в текстах. Данный шаг является основным в процессе анализа текстов, и практические задачи, решаемые на этом шаге.

Интерпретация результатов. Последний шаг в процессе обнаружения знаний предполагает интерпретацию полученных результатов. Как прави­ло, интерпретация заключается или в представлении результатов на есте­ственном языке, или в их визуализации в графическом виде.

Визуализация также может быть использована как средство анализа текста. Для этого извлекаются ключевые понятия, которые и представляются в гра­фическом виде. Такой подход помогает пользователю быстро идентифициро­вать главные темы и понятия, а также определить их важность.

Предварительная обработка текста

Одной из главных проблем анализа текстов является большое количество слов в документе. Если каждое из этих слов подвергать анализу, то время по­иска новых знаний резко возрастет и вряд ли будет удовлетворять требовани­ям пользователей. В то же время очевидно, что не все слова в тексте несут полезную информацию. Кроме того, в силу гибкости естественных языков формально различные слова (синонимы и т. п.) на самом деле означают оди­наковые понятия. Таким образом, удаление неинформативных слов, а также приведение близких по смыслу слов к единой форме значительно сокращают время анализа текстов. Устранение описанных проблем выполняется на этапе предварительной обработки текста.

Обычно используют следующие приемы удаления неинформативных слов и повышения строгости текстов:

    Удаление стоп-слов. Стоп-словами называются слова, которые являются вспомогательными и несут мало информации о содержании документа.

    Стэмминг- морфологический поиск. Он заключается в преобразовании каждого слова к его нормальной форме.

    Л-граммы это альтернатива морфологическому разбору и удалению стоп-слов. Позволяют сделать текст более строгим, не решают проблему уменьшения количества неинформативных слов;

    Приведение регистра. Этот прием заключается в преобразовании всех сим­волов к верхнему или нижнему регистру.

Наиболее эффективно совместное применение перечисленных методов.

Задачи Text Mining

В настоящее время в литературе описано много прикладных задач, решаемых с помощью анализа текстовых документов. Это и классические задачи Data Mining: классификация, кластеризация, и характерные только для текстовых документов задачи: автоматическое аннотирование, извлечение ключевых понятий и др.

Классификация (classification) - стандартная задача из области Data Mining. Ее целью является определение для каждого документа одной или несколь­ких заранее заданных категорий, к которым этот документ относится. Осо­бенностью задачи классификации является предположение, что множество классифицируемых документов не содержит "мусора", т. е. каждый из доку­ментов соответствует какой-нибудь заданной категории.

Частным случаем задачи классификации является задача определения тема­тики документа .

Целью кластеризации (clustering) документов является автоматическое выяв­ление групп семантически похожих документов среди заданного фиксиро­ванного множества. Отметим, что группы формируются только на основе по­парной схожести описаний документов, и никакие характеристики этих групп не задаются заранее.

Автоматическое аннотирование (summarization) позволяет сократить текст, сохраняя его смысл. Решение этой задачи обычно регулируется пользовате­лем при помощи определения количества извлекаемых предложений или процентом извлекаемого текста по отношению ко всему тексту. Результат включает в себя наиболее значимые предложения в тексте.

Первичной целью извлечения кчючевых понятий (feature extraction) является идентификация фактов и отношений в тексте. В большинстве случаев такими понятиями являются имена существительные и нарицательные: имена и фа­милии людей, названия организаций и др. Алгоритмы извлечения понятий могут использовать словари, чтобы идентифицировать некоторые термины и лингвистические шаблоны для определения других.

Навигация по тексту (text-base navigation) позволяет пользователям переме­щаться по документам относительно тем и значимых терминов. Это выпол­няется за счет идентификации ключевых понятий и некоторых отношений между ними.

Анализ трендов позволяет идентифицировать тренды в наборах документов на какой-то период времени. Тренд может быть использован, например, для обнаружения изменений интересов компании от одного сегмента рынка к другому.

Поиск ассоциаций также является одной из основных задач Data Mining. Для ее решения в заданном наборе документов идентифицируются ассоциатив­ные отношения между ключевыми понятиями.

Существует достаточно большое количество разновидностей перечисленных задач, а также методов их решения. Это еще раз подтверждает значимость анализа текстов. Далее в этой главе рассматриваются решения следующих задач: извлечение ключевых понятий, классификация, кластеризация и авто­матическое аннотирование.

Классификация текстовых документов

Классификация текстовых документов, так же как и в случае классификации объектов заключается в отнесении документа к одному из заранее известных классов. Часто классификацию применительно к текстовым доку­ментам называют категоризацией или рубрикацией. Очевидно, что данные названия происходят от задачи систематизации документов по каталогам, категориям и рубрикам. При этом структура каталогов может быть как одно­уровневой, так и многоуровневой (иерархической).

Формально задачу классификации текстовых документов описывают набо­ром множеств.

В задаче классификации требуется на основе этих данных построить про­цедуру, которая заключается в нахождении наиболее вероятной категории из множества С для исследуемого документа.

Большинство методов классификации текстов так или иначе основаны на предположении, что документы, относящиеся к одной категории, содержат одинаковые признаки (слова или словосочетания), и наличие или отсутствие таких признаков в документе говорит о его принадлежности или непринад­лежности к той или иной теме.

Такое множество признаков часто называют словарем, т. к. оно состоит из лексем, которые включают слова и/или словосочетания, характеризующие категорию.

Необходимо заметить, что данные наборы признаков являются отличитель­ной чертой классификации текстовых документов от классификации объек­тов в Data Mining, которые характеризуются набором атрибутов.

Решение об отнесении документа d, к категории с, принимается на основании пересечения общих признаков

Задача методов классификации состоит в том, чтобы наилучшим образом вы­брать такие признаки и сформулировать правила, на основе которых будет приниматься решение об отнесении документа к рубрике.

Средства анализа текстовой информации

    Средства Oracle - Oracle Text2

Начиная с версии Oracle 7.3.3, средства текстового анализа являются неотъ­емлемой частью продуктов Oracle. В Oracle эти средства развились и полу­чили новое название- Oracle Text- программный комплекс, интегриро­ванный в СУБД, позволяющий эффективно работать с запросами, относящи­мися к неструктурированным текстам. При этом обработка текста сочетается с возможностями, которые предоставлены пользователю для работы с реля­ционными базами данных. В частности, при написании приложений для об­работки текста стало возможно использование SQL.

Основной задачей, на решение которой нацелены средства Oracle Text, явля­ется задача поиска документов по их содержанию - по словам или фразам, которые при необходимости комбинируются с использованием булевых опе­раций. Результаты поиска ранжируются по значимости, с учетом частоты встречаемости слов запроса в найденных документах.

    Средства от IBM - Intelligent Miner for Text1

Продукт фирмы IBM Intelligent Miner for Text представляет собой набор от­дельных утилит, запускаемых из командной строки или из скриптов незави­симо друг от друга. Система содержит объединение некоторых утилиты для решения задач анализа текстовой информации.

IBM Intelligent Miner for Text объединяет мощную совокупность инструмен­тов, базирующихся в основном на механизмах поиска информации (infor­mation retrieval), что является спецификой всего продукта. Система состоит ряд базовых компонентов, которые имеют самостоятельное значение вне пре­делов технологии Text Mining:

    Средства SAS Institute - Text Miner

Американская компания SAS Institute выпустила систему SAS Text Miner для сравнения определенных грамматических и словесных рядов в письменной речи. Text Miner весьма универсальна, поскольку может работать с тексто­выми документами различных форматов - в базах данных, файловых систе­мах и далее в web.

Text Miner обеспечивает логическую обработку текста в среде пакета SAS Enterprise Miner. Это позволяет пользователям обогащать процесс анализа данных, интегрируя неструктурированную текстовую информацию с сущест­вующими структурированными данными, такими как возраст, доход и харак­тер покупательского спроса.

Основные тезисы

    Обнаружение знаний в тексте - это нетривиальный процесс обнаружения действительно новых, потенциально полезных и понятных шаблонов в не­структурированных текстовых данных.

    Процесс анализа текстовых документов можно представить как последо­вательность нескольких шагов: поиск информации, предварительная обра­ботка документов, извлечение информации, применение методов Text Mining, интерпретация результатов.

    Обычно используют следующие приемы удаления неинформативных слов и повышения строгости текстов: удаление стоп-слов, стэмминг, Л-граммы, приведение регистра.

    Задачами анализа текстовой информации являются: классификация, кла­стеризация, автоматическое аннотирование, извлечение ключевых поня­тий, навигация по тексту, анализ трендов, поиск ассоциаций и др.

    Извлечение ключевых понятий из текстов может рассматриваться и как отдельная прикладная задача, и как отдельный этап анализа текстов. В по­следнем случае извлеченные из текста факты используются для решения различных задач анализа.

    Процесс извлечения ключевых понятий с помощью шаблонов выполняет­ся в две стадии: на первой из текстовых документов извлекаются отдель­ные факты с помощью лексического анализа, на второй стадии выполня­ется интеграция извлеченных фактов и/или вывод новых фактов.

    Большинство методов классификации текстов так или иначе основаны на предположении, что документы, относящиеся к одной категории, содер­жат одинаковые признаки (слова или словосочетания), и наличие или от­сутствие таких признаков в документе говорит о его принадлежности или непринадлежности к той или иной теме.

    Большинство алгоритмов кластеризации требуют, чтобы данные были представлены в виде модели векторного пространства, которая широко применяется для информационного поиска и использует метафору для от­ражения семантического подобия как пространственной близости.

    Выделяют два основных подхода к автоматическому аннотированию тек­стовых документов: извлечение (выделение наиболее важных фрагментов) и обобщение (использование предварительно собранных знаний).

Вывод

Интеллектуальный анализ данных является одним из наиболее актуальных и востребованных направлений прикладной математики. Современные процессы бизнеса и производства порождают огромные массивы данных, и людям становится все труднее интерпретировать и реагировать на большое количество данных, которые динамически изменяются во времени выполнения, не говоря уже о предупреждении критических ситуаций. «Интеллектуальный анализ данных» извлечь максимум полезных знаний из многомерных, разнородных, неполных, неточных, противоречивых, косвенных данных. Помогает сделать это эффективно, если объем данных измеряется гигабайтами или даже терабайтами. Помогает строить алгоритмы, способные обучаться принятию решений в различных профессиональных областях.

Средства «Интеллектуального анализа данных» предохраняют людей от информационной перегрузки, перерабатывая оперативные данные в полезную информацию так, чтобы нужные действия могли быть приняты в нужные времена.

Прикладные разработки ведутся по следующим направлениям: прогнозирование в экономических системах; автоматизация маркетинговых исследований и анализ клиентских сред для производственных, торговых, телекоммуникационных и Интернет-компаний; автоматизация принятия кредитных решений и оценка кредитных рисков; мониторинг финансовых рынков; автоматические торговые системы.

Список литературы

    «Технологии анализа данных: Data Mining. Visual Mining. Text Mining, OLAP» А. А. Барсегян. M. С. Куприянов, В. В. Стенаненко, И. И. Холод. - 2-е изд., перераб. и доп.

    http://inf.susu.ac.ru/~pollak/expert/G2/g2.htm - статья интернета

    http://www.piter.com/contents/978549807257/978549807257_p.pdf -Технологии анализа данных

    Дипломная работа >> Банковское дело

    Заемщика с использованием кластерного, вербального анализа , корректирующих коэффициентов и т.д., также... кредитоспособности заемщика на основе интеллектуального анализа данных Data Mining (с... На начальном этапе анализа проводится анализ собственных средств и...

  1. Анализ и классификация современного рынка информационных систем, реализующих дискреционную, м

    Реферат >> Информатика

    1.3 Ролевое разграничение 6 2. Сравнительный анализ различных типов систем 7 Операционные системы... системы, включающий в себя: анализ политик безопасности и их характеристик, ... приложений или реализующие более интеллектуальный анализ данных. К тому же...

  2. Интеллектуальные способности одаренных детей в связи со школьной успеваемостью

    Дипломная работа >> Психология

    Взаимосвязь успеваемости и особенностей интеллектуального развития. На основании теоретического анализа проблемы исследования была... к интеллекту без анализа его психологической структуры. Решающей для оценки интеллектуальных способностей является...